BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 25675139)

  • 1. Scalable production of wrinkled and few-layered graphene sheets and their use for oil and organic solvent absorption.
    Liu D; Lei W; Chen Y
    Phys Chem Chem Phys; 2015 Mar; 17(10):6913-8. PubMed ID: 25675139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simple, green and high-yield production of single- or few-layer graphene by hydrothermal exfoliation of graphite.
    Liu X; Zheng M; Xiao K; Xiao Y; He C; Dong H; Lei B; Liu Y
    Nanoscale; 2014 May; 6(9):4598-603. PubMed ID: 24632864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomass derived solvents for the scalable production of single layered graphene from graphite.
    Sharma M; Mondal D; Singh N; Prasad K
    Chem Commun (Camb); 2016 Jul; 52(58):9074-7. PubMed ID: 26898386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Covalent synthesis of organophilic chemically functionalized graphene sheets.
    Shen J; Li N; Shi M; Hu Y; Ye M
    J Colloid Interface Sci; 2010 Aug; 348(2):377-83. PubMed ID: 20494367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of high quality single- or few-layered graphene by solid exfoliation of graphite in the presence of ammonia borane.
    Liu L; Xiong Z; Hu D; Wu G; Chen P
    Chem Commun (Camb); 2013 Sep; 49(72):7890-2. PubMed ID: 23900550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte.
    Wang J; Manga KK; Bao Q; Loh KP
    J Am Chem Soc; 2011 Jun; 133(23):8888-91. PubMed ID: 21557613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mass production of highly-porous graphene for high-performance supercapacitors.
    Amiri A; Shanbedi M; Ahmadi G; Eshghi H; Kazi SN; Chew BT; Savari M; Zubir MN
    Sci Rep; 2016 Sep; 6():32686. PubMed ID: 27604639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of quasi-2D graphene nanosheets through the solvent exfoliation of pitch-based carbon fiber.
    Yeon Y; Lee MY; Kim SY; Lee J; Kim B; Park B; In I
    Nanotechnology; 2015 Sep; 26(37):375602. PubMed ID: 26313887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly conducting graphene sheets and Langmuir-Blodgett films.
    Li X; Zhang G; Bai X; Sun X; Wang X; Wang E; Dai H
    Nat Nanotechnol; 2008 Sep; 3(9):538-42. PubMed ID: 18772914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of graphene by exfoliation of graphite in a volatile organic solvent.
    Choi EY; Choi WS; Lee YB; Noh YY
    Nanotechnology; 2011 Sep; 22(36):365601. PubMed ID: 21836332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient and Scalable Production of 2D Material Dispersions using Hexahydroxytriphenylene as a Versatile Exfoliant and Dispersant.
    Liu G; Komatsu N
    Chemphyschem; 2016 Jun; 17(11):1557-67. PubMed ID: 26918302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A facile approach to the synthesis of graphene nanosheets under ultra-low exfoliation temperature.
    Zhang HB; Chen C; Wang JW; Yang Y; Lu ZH; Yan Q; Zheng WG
    J Nanosci Nanotechnol; 2011 Dec; 11(12):10868-70. PubMed ID: 22409014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental Synthesis of Few Layers Graphene Sheets Using Ultrasonic Exfoliation with Enhanced Electrical and Thermal Properties.
    Noroozi M; Zakaria A; Radiman S; Abdul Wahab Z
    PLoS One; 2016; 11(4):e0152699. PubMed ID: 27064575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organic functionalization of graphene in dispersions.
    Quintana M; Vazquez E; Prato M
    Acc Chem Res; 2013 Jan; 46(1):138-48. PubMed ID: 22872046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene size control via a mechanochemical method and electroresponsive properties.
    Shin KY; Lee S; Hong S; Jang J
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5531-7. PubMed ID: 24665987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rationally designed surfactants for few-layered graphene exfoliation: ionic groups attached to electron-deficient π-conjugated unit through alkyl spacers.
    Zhang L; Zhang Z; He C; Dai L; Liu J; Wang L
    ACS Nano; 2014 Jul; 8(7):6663-70. PubMed ID: 24968119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversible functionalization and exfoliation of graphite by a Diels-Alder reaction with furfuryl amine.
    Torkaman NF; Kley M; Bremser W; Wilhelm R
    RSC Adv; 2022 Jun; 12(27):17249-17256. PubMed ID: 35765460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous electrochemical exfoliation of micrometer-sized graphene using synergistic ion intercalations and organic solvents.
    Abdelkader AM; Kinloch IA; Dryfe RA
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):1632-9. PubMed ID: 24392712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of colloidal graphene in quantity by electrochemical exfoliation.
    Chen K; Xue D
    J Colloid Interface Sci; 2014 Dec; 436():41-6. PubMed ID: 25265584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MgO-decorated few-layered graphene as an anode for li-ion batteries.
    Petnikota S; Rotte NK; Reddy MV; Srikanth VV; Chowdari BV
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2301-9. PubMed ID: 25559260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.