BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

550 related articles for article (PubMed ID: 25675212)

  • 1. Octahedral Pd@Pt1.8Ni core-shell nanocrystals with ultrathin PtNi alloy shells as active catalysts for oxygen reduction reaction.
    Zhao X; Chen S; Fang Z; Ding J; Sang W; Wang Y; Zhao J; Peng Z; Zeng J
    J Am Chem Soc; 2015 Mar; 137(8):2804-7. PubMed ID: 25675212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphology and lateral strain control of Pt nanoparticles via core-shell construction using alloy AgPd core toward oxygen reduction reaction.
    Yang J; Yang J; Ying JY
    ACS Nano; 2012 Nov; 6(11):9373-82. PubMed ID: 23061786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Platinum-based oxygen reduction electrocatalysts.
    Wu J; Yang H
    Acc Chem Res; 2013 Aug; 46(8):1848-57. PubMed ID: 23808919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coating Pt-Ni Octahedra with Ultrathin Pt Shells to Enhance the Durability without Compromising the Activity toward Oxygen Reduction.
    Park J; Liu J; Peng HC; Figueroa-Cosme L; Miao S; Choi SI; Bao S; Yang X; Xia Y
    ChemSusChem; 2016 Aug; 9(16):2209-15. PubMed ID: 27460459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rh-Doped Pt-Ni Octahedral Nanoparticles: Understanding the Correlation between Elemental Distribution, Oxygen Reduction Reaction, and Shape Stability.
    Beermann V; Gocyla M; Willinger E; Rudi S; Heggen M; Dunin-Borkowski RE; Willinger MG; Strasser P
    Nano Lett; 2016 Mar; 16(3):1719-25. PubMed ID: 26854940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled synthesis of Pd-Pt alloy hollow nanostructures with enhanced catalytic activities for oxygen reduction.
    Hong JW; Kang SW; Choi BS; Kim D; Lee SB; Han SW
    ACS Nano; 2012 Mar; 6(3):2410-9. PubMed ID: 22360814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pt-Pd alloy nanoparticle-decorated carbon nanotubes: a durable and methanol tolerant oxygen reduction electrocatalyst.
    Ghosh S; Sahu RK; Raj CR
    Nanotechnology; 2012 Sep; 23(38):385602. PubMed ID: 22948751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling the size and composition of nanosized Pt-Ni octahedra to optimize their catalytic activities toward the oxygen reduction reaction.
    Choi SI; Xie S; Shao M; Lu N; Guerrero S; Odell JH; Park J; Wang J; Kim MJ; Xia Y
    ChemSusChem; 2014 May; 7(5):1476-83. PubMed ID: 24644079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction.
    Lim B; Jiang M; Camargo PH; Cho EC; Tao J; Lu X; Zhu Y; Xia Y
    Science; 2009 Jun; 324(5932):1302-5. PubMed ID: 19443738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Palladium monolayer and palladium alloy electrocatalysts for oxygen reduction.
    Shao MH; Huang T; Liu P; Zhang J; Sasaki K; Vukmirovic MB; Adzic RR
    Langmuir; 2006 Dec; 22(25):10409-15. PubMed ID: 17129009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Truncated octahedral Pt(3)Ni oxygen reduction reaction electrocatalysts.
    Wu J; Zhang J; Peng Z; Yang S; Wagner FT; Yang H
    J Am Chem Soc; 2010 Apr; 132(14):4984-5. PubMed ID: 20334375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A General Method for Multimetallic Platinum Alloy Nanowires as Highly Active and Stable Oxygen Reduction Catalysts.
    Bu L; Ding J; Guo S; Zhang X; Su D; Zhu X; Yao J; Guo J; Lu G; Huang X
    Adv Mater; 2015 Nov; 27(44):7204-12. PubMed ID: 26459261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manipulating the oxygen reduction activity of platinum shells with shape-controlled palladium nanocrystal cores.
    Shao M; He G; Peles A; Odell JH; Zeng J; Su D; Tao J; Yu T; Zhu Y; Xia Y
    Chem Commun (Camb); 2013 Oct; 49(79):9030-2. PubMed ID: 23982335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Titanium oxynitride interlayer to influence oxygen reduction reaction activity and corrosion stability of Pt and Pt-Ni alloy.
    Tan X; Wang L; Zahiri B; Kohandehghan A; Karpuzov D; Lotfabad EM; Li Z; Eikerling MH; Mitlin D
    ChemSusChem; 2015 Jan; 8(2):361-76. PubMed ID: 25470445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural dependence of oxygen reduction reaction on palladium nanocrystals.
    Shao M; Yu T; Odell JH; Jin M; Xia Y
    Chem Commun (Camb); 2011 Jun; 47(23):6566-8. PubMed ID: 21566815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Indexed PtNi Alloy Skin Spiraled on Pd Nanowires for Highly Efficient Oxygen Reduction Reaction Catalysis.
    Zhao Y; Tao L; Dang W; Wang L; Xia M; Wang B; Liu M; Gao F; Zhang J; Zhao Y
    Small; 2019 Apr; 15(17):e1900288. PubMed ID: 30920760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ study of atomic structure transformations of Pt-Ni nanoparticle catalysts during electrochemical potential cycling.
    Tuaev X; Rudi S; Petkov V; Hoell A; Strasser P
    ACS Nano; 2013 Jul; 7(7):5666-74. PubMed ID: 23805992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monodispersed Pd-Ni nanoparticles: composition control synthesis and catalytic properties in the Miyaura-Suzuki reaction.
    Wu Y; Wang D; Zhao P; Niu Z; Peng Q; Li Y
    Inorg Chem; 2011 Mar; 50(6):2046-8. PubMed ID: 21268607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shape and composition-controlled platinum alloy nanocrystals using carbon monoxide as reducing agent.
    Wu J; Gross A; Yang H
    Nano Lett; 2011 Feb; 11(2):798-802. PubMed ID: 21204581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of PdPt alloy nanodots on gold nanorods: tuning oxidase-like activities via composition.
    Zhang K; Hu X; Liu J; Yin JJ; Hou S; Wen T; He W; Ji Y; Guo Y; Wang Q; Wu X
    Langmuir; 2011 Mar; 27(6):2796-803. PubMed ID: 21332216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.