BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 25675463)

  • 1. Design and Evaluation of a Prosthetic Knee Joint Using the Geared Five-Bar Mechanism.
    Sun Y; Ge W; Zheng J; Dong D
    IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):1031-8. PubMed ID: 25675463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal-spatial parameters of gait in transfemoral amputees: Comparison of bionic and mechanically passive knee joints.
    Uchytil J; Jandacka D; Zahradnik D; Farana R; Janura M
    Prosthet Orthot Int; 2014 Jun; 38(3):199-203. PubMed ID: 23824546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinematic and dynamic performance of prosthetic knee joint using six-bar mechanism.
    Jin D; Zhang R; Dimo HO; Wang R; Zhang J
    J Rehabil Res Dev; 2003; 40(1):39-48. PubMed ID: 15150719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal design and control of an electromechanical transfemoral prosthesis with energy regeneration.
    Rohani F; Richter H; van den Bogert AJ
    PLoS One; 2017; 12(11):e0188266. PubMed ID: 29149213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of a stance phase microprocessor-controlled knee prosthesis on level walking in lower functioning individuals with a transfemoral amputation.
    Eberly VJ; Mulroy SJ; Gronley JK; Perry J; Yule WJ; Burnfield JM
    Prosthet Orthot Int; 2014 Dec; 38(6):447-55. PubMed ID: 24135259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of prosthetic knee and ankle mechanisms to swing-phase foot clearance.
    Sensinger JW; Intawachirarat N; Gard SA
    IEEE Trans Neural Syst Rehabil Eng; 2013 Jan; 21(1):74-80. PubMed ID: 23193323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional gait analysis of trans-femoral amputees using two different single-axis prosthetic knees with hydraulic swing-phase control: Kinematic and kinetic comparison of two prosthetic knees.
    Sapin E; Goujon H; de Almeida F; Fodé P; Lavaste F
    Prosthet Orthot Int; 2008 Jun; 32(2):201-18. PubMed ID: 18569888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization Design and Performance Analysis of a Bionic Knee Joint Based on the Geared Five-Bar Mechanism.
    Wang Z; Ge W; Zhang Y; Liu B; Liu B; Jin S; Li Y
    Bioengineering (Basel); 2023 May; 10(5):. PubMed ID: 37237651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A quasi-passive compliant stance control Knee-Ankle-Foot Orthosis.
    Shamaei K; Napolitano PC; Dollar AM
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650471. PubMed ID: 24187288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and functional evaluation of a quasi-passive compliant stance control knee-ankle-foot orthosis.
    Shamaei K; Napolitano PC; Dollar AM
    IEEE Trans Neural Syst Rehabil Eng; 2014 Mar; 22(2):258-68. PubMed ID: 24608684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and Speed-Adaptive Control of a Powered Geared Five-Bar Prosthetic Knee Using BP Neural Network Gait Recognition.
    Sun Y; Huang R; Zheng J; Dong D; Chen X; Bai L; Ge W
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31717856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conventional 4-bar linkage knee mechanisms: a strength-weakness analysis.
    de Vries J
    J Rehabil Res Dev; 1995 Feb; 32(1):36-42. PubMed ID: 7760266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and quantitative evaluation of a stance-phase controlled prosthetic knee joint for children.
    Andrysek J; Naumann S; Cleghorn WL
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):437-43. PubMed ID: 16425824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of a new polycentric above-knee prosthesis with a pneumatic swing phase control.
    Patil KM; Chakraborty JK
    J Biomech; 1991; 24(3-4):223-33. PubMed ID: 2055911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Biomechanics and evaluation of the microprocessor-controlled C-Leg exoprosthesis knee joint].
    Stinus H
    Z Orthop Ihre Grenzgeb; 2000; 138(3):278-82. PubMed ID: 10929622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and energetic evaluation of a prosthetic knee joint actuator with a lockable parallel spring.
    Geeroms J; Flynn L; Jimenez-Fabian R; Vanderborght B; Lefeber D
    Bioinspir Biomim; 2017 Feb; 12(2):026002. PubMed ID: 28059775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preliminary evaluation of an automatically stance-phase controlled pediatric prosthetic knee joint using quantitative gait analysis.
    Andrysek J; Redekop S; Naumann S
    Arch Phys Med Rehabil; 2007 Apr; 88(4):464-70. PubMed ID: 17398247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical conceptual design of a passive transfemoral prosthesis.
    Unal R; Carloni R; Hekman EG; Stramigioli S; Koopman HM
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():515-8. PubMed ID: 21095657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ankle-knee synchronous knee lock mechanism: a revision.
    Lee W
    Arch Phys Med Rehabil; 1982 Aug; 63(8):392-3. PubMed ID: 7115035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.