These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 25675482)
1. Tetrahydrobiopterin and alkylglycerol monooxygenase substantially alter the murine macrophage lipidome. Watschinger K; Keller MA; McNeill E; Alam MT; Lai S; Sailer S; Rauch V; Patel J; Hermetter A; Golderer G; Geley S; Werner-Felmayer G; Plumb RS; Astarita G; Ralser M; Channon KM; Werner ER Proc Natl Acad Sci U S A; 2015 Feb; 112(8):2431-6. PubMed ID: 25675482 [TBL] [Abstract][Full Text] [Related]
2. Identification of the gene encoding alkylglycerol monooxygenase defines a third class of tetrahydrobiopterin-dependent enzymes. Watschinger K; Keller MA; Golderer G; Hermann M; Maglione M; Sarg B; Lindner HH; Hermetter A; Werner-Felmayer G; Konrat R; Hulo N; Werner ER Proc Natl Acad Sci U S A; 2010 Aug; 107(31):13672-7. PubMed ID: 20643956 [TBL] [Abstract][Full Text] [Related]
3. Alkylglycerol monooxygenase. Watschinger K; Werner ER IUBMB Life; 2013 Apr; 65(4):366-72. PubMed ID: 23441072 [TBL] [Abstract][Full Text] [Related]
4. Glyceryl ether monooxygenase resembles aromatic amino acid hydroxylases in metal ion and tetrahydrobiopterin dependence. Watschinger K; Keller MA; Hermetter A; Golderer G; Werner-Felmayer G; Werner ER Biol Chem; 2009 Jan; 390(1):3-10. PubMed ID: 19007315 [TBL] [Abstract][Full Text] [Related]
5. Human mononuclear phagocyte inducible nitric oxide synthase (iNOS): analysis of iNOS mRNA, iNOS protein, biopterin, and nitric oxide production by blood monocytes and peritoneal macrophages. Weinberg JB; Misukonis MA; Shami PJ; Mason SN; Sauls DL; Dittman WA; Wood ER; Smith GK; McDonald B; Bachus KE Blood; 1995 Aug; 86(3):1184-95. PubMed ID: 7542498 [TBL] [Abstract][Full Text] [Related]
6. Alkylglycerol monooxygenase as a potential modulator for PAF synthesis in macrophages. Tokuoka SM; Kita Y; Shindou H; Shimizu T Biochem Biophys Res Commun; 2013 Jun; 436(2):306-12. PubMed ID: 23743196 [TBL] [Abstract][Full Text] [Related]
7. Phosphoinositide 3-kinase in nitric oxide synthesis in macrophage: critical dimerization of inducible nitric-oxide synthase. Sakai K; Suzuki H; Oda H; Akaike T; Azuma Y; Murakami T; Sugi K; Ito T; Ichinose H; Koyasu S; Shirai M J Biol Chem; 2006 Jun; 281(26):17736-42. PubMed ID: 16636057 [TBL] [Abstract][Full Text] [Related]
8. Ascorbate enhances iNOS activity by increasing tetrahydrobiopterin in RAW 264.7 cells. Nakai K; Urushihara M; Kubota Y; Kosaka H Free Radic Biol Med; 2003 Oct; 35(8):929-37. PubMed ID: 14556857 [TBL] [Abstract][Full Text] [Related]
9. Adaptations of the 3T3-L1 adipocyte lipidome to defective ether lipid catabolism upon Agmo knockdown. Sailer S; Lackner K; Pras-Raves ML; Wever EJM; van Klinken JB; Dane AD; Geley S; Koch J; Golderer G; Werner-Felmayer G; Keller MA; Zwerschke W; Vaz FM; Werner ER; Watschinger K J Lipid Res; 2022 Jun; 63(6):100222. PubMed ID: 35537527 [TBL] [Abstract][Full Text] [Related]
10. Regulation of the L-arginine-dependent and tetrahydrobiopterin-dependent biosynthesis of nitric oxide in murine macrophages. Schoedon G; Schneemann M; Hofer S; Guerrero L; Blau N; Schaffner A Eur J Biochem; 1993 Apr; 213(2):833-9. PubMed ID: 7682948 [TBL] [Abstract][Full Text] [Related]
11. Regulation of iNOS function and cellular redox state by macrophage Gch1 reveals specific requirements for tetrahydrobiopterin in NRF2 activation. McNeill E; Crabtree MJ; Sahgal N; Patel J; Chuaiphichai S; Iqbal AJ; Hale AB; Greaves DR; Channon KM Free Radic Biol Med; 2015 Feb; 79():206-16. PubMed ID: 25451639 [TBL] [Abstract][Full Text] [Related]
12. Inhibition of CDKS by roscovitine suppressed LPS-induced *NO production through inhibiting NFkappaB activation and BH4 biosynthesis in macrophages. Du J; Wei N; Guan T; Xu H; An J; Pritchard KA; Shi Y Am J Physiol Cell Physiol; 2009 Sep; 297(3):C742-9. PubMed ID: 19553566 [TBL] [Abstract][Full Text] [Related]
13. 2,4-Diamino-6-hydroxypyrimidine, an inhibitor of tetrahydrobiopterin synthesis, downregulates the expression of iNOS protein and mRNA in primary murine macrophages. Bogdan C; Werner E; Stenger S; Wachter H; Röllinghoff M; Werner-Felmayer G FEBS Lett; 1995 Apr; 363(1-2):69-74. PubMed ID: 7537228 [TBL] [Abstract][Full Text] [Related]
14. Availability of tetrahydrobiopterin is not a factor in the inability to detect nitric oxide production by human macrophages. Sakai N; Milstien S Biochem Biophys Res Commun; 1993 May; 193(1):378-83. PubMed ID: 8503929 [TBL] [Abstract][Full Text] [Related]
15. Impact of tumour necrosis factor-alpha and interferon-gamma on tetrahydrobiopterin synthesis in murine fibroblasts and macrophages. Werner ER; Werner-Felmayer G; Fuchs D; Hausen A; Reibnegger G; Yim JJ; Wachter H Biochem J; 1991 Dec; 280 ( Pt 3)(Pt 3):709-14. PubMed ID: 1764035 [TBL] [Abstract][Full Text] [Related]
16. Nitric Oxide Modulates Metabolic Remodeling in Inflammatory Macrophages through TCA Cycle Regulation and Itaconate Accumulation. Bailey JD; Diotallevi M; Nicol T; McNeill E; Shaw A; Chuaiphichai S; Hale A; Starr A; Nandi M; Stylianou E; McShane H; Davis S; Fischer R; Kessler BM; McCullagh J; Channon KM; Crabtree MJ Cell Rep; 2019 Jul; 28(1):218-230.e7. PubMed ID: 31269442 [TBL] [Abstract][Full Text] [Related]
17. Tetrahydrobiopterin is required for cytokine-induced nitric oxide production in a murine macrophage cell line (RAW 264). Sakai N; Kaufman S; Milstein S Mol Pharmacol; 1993 Jan; 43(1):6-10. PubMed ID: 7678692 [TBL] [Abstract][Full Text] [Related]
18. Tetrahydrobiopterin biosynthesis in white and brown adipose tissues is enhanced following intraperitoneal administration of bacterial lipopolysaccharide. Fujiwara K; Mori K; Kaneko YS; Nakashima A; Nagasaka A; Itoh M; Ota A Biochim Biophys Acta; 2004 Feb; 1670(3):181-98. PubMed ID: 14980445 [TBL] [Abstract][Full Text] [Related]
19. High-performance liquid chromatographic methods for the quantification of tetrahydrobiopterin biosynthetic enzymes. Werner ER; Werner-Felmayer G; Wachter H J Chromatogr B Biomed Appl; 1996 Sep; 684(1-2):51-8. PubMed ID: 8906465 [TBL] [Abstract][Full Text] [Related]
20. Alkylglycerol monooxygenase, a heterotaxy candidate gene, regulates left-right patterning via Wnt signaling. Duncan AR; González DP; Del Viso F; Robson A; Khokha MK; Griffin JN Dev Biol; 2019 Dec; 456(1):1-7. PubMed ID: 31398317 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]