These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
457 related articles for article (PubMed ID: 25675512)
1. De novo production of the plant-derived alkaloid strictosidine in yeast. Brown S; Clastre M; Courdavault V; O'Connor SE Proc Natl Acad Sci U S A; 2015 Mar; 112(11):3205-10. PubMed ID: 25675512 [TBL] [Abstract][Full Text] [Related]
2. Engineered biosynthesis of plant heteroyohimbine and corynantheine alkaloids in Saccharomyces cerevisiae. Dror MJ; Misa J; Yee DA; Chu AM; Yu RK; Chan BB; Aoyama LS; Chaparala AP; O'Connor SE; Tang Y J Ind Microbiol Biotechnol; 2024 Jan; 51():. PubMed ID: 38140980 [TBL] [Abstract][Full Text] [Related]
3. Engineered mitochondrial production of monoterpenes in Saccharomyces cerevisiae. Yee DA; DeNicola AB; Billingsley JM; Creso JG; Subrahmanyam V; Tang Y Metab Eng; 2019 Sep; 55():76-84. PubMed ID: 31226348 [TBL] [Abstract][Full Text] [Related]
4. Strictosidine: from alkaloid to enzyme to gene. Kutchan TM Phytochemistry; 1993 Feb; 32(3):493-506. PubMed ID: 7763429 [TBL] [Abstract][Full Text] [Related]
6. Engineered Production of Strictosidine and Analogues in Yeast. Misa J; Billingsley JM; Niwa K; Yu RK; Tang Y ACS Synth Biol; 2022 Apr; 11(4):1639-1649. PubMed ID: 35294193 [TBL] [Abstract][Full Text] [Related]
7. Discovery of a Short-Chain Dehydrogenase from Catharanthus roseus that Produces a New Monoterpene Indole Alkaloid. Stavrinides AK; Tatsis EC; Dang TT; Caputi L; Stevenson CEM; Lawson DM; Schneider B; O'Connor SE Chembiochem; 2018 May; 19(9):940-948. PubMed ID: 29424954 [TBL] [Abstract][Full Text] [Related]
8. Gene coexpression networks allow the discovery of two strictosidine synthases underlying monoterpene indole alkaloid biosynthesis in Uncaria rhynchophylla. Jiang CX; Yu JX; Fei X; Pan XJ; Zhu NN; Lin CL; Zhou D; Zhu HR; Qi Y; Wu ZG Int J Biol Macromol; 2023 Jan; 226():1360-1373. PubMed ID: 36442554 [TBL] [Abstract][Full Text] [Related]
9. A three enzyme system to generate the Strychnos alkaloid scaffold from a central biosynthetic intermediate. Tatsis EC; Carqueijeiro I; Dugé de Bernonville T; Franke J; Dang TT; Oudin A; Lanoue A; Lafontaine F; Stavrinides AK; Clastre M; Courdavault V; O'Connor SE Nat Commun; 2017 Aug; 8(1):316. PubMed ID: 28827772 [TBL] [Abstract][Full Text] [Related]
10. The subcellular organization of strictosidine biosynthesis in Catharanthus roseus epidermis highlights several trans-tonoplast translocations of intermediate metabolites. Guirimand G; Guihur A; Ginis O; Poutrain P; Héricourt F; Oudin A; Lanoue A; St-Pierre B; Burlat V; Courdavault V FEBS J; 2011 Mar; 278(5):749-63. PubMed ID: 21205206 [TBL] [Abstract][Full Text] [Related]
11. Genetic engineering approach using early Vinca alkaloid biosynthesis genes led to increased tryptamine and terpenoid indole alkaloids biosynthesis in differentiating cultures of Catharanthus roseus. Sharma A; Verma P; Mathur A; Mathur AK Protoplasma; 2018 Jan; 255(1):425-435. PubMed ID: 28808798 [TBL] [Abstract][Full Text] [Related]
12. Unlocking the diversity of alkaloids in Catharanthus roseus: nuclear localization suggests metabolic channeling in secondary metabolism. Stavrinides A; Tatsis EC; Foureau E; Caputi L; Kellner F; Courdavault V; O'Connor SE Chem Biol; 2015 Mar; 22(3):336-41. PubMed ID: 25772467 [TBL] [Abstract][Full Text] [Related]
13. Engineering of a Nepetalactol-Producing Platform Strain of Saccharomyces cerevisiae for the Production of Plant Seco-Iridoids. Campbell A; Bauchart P; Gold ND; Zhu Y; De Luca V; Martin VJ ACS Synth Biol; 2016 May; 5(5):405-14. PubMed ID: 26981892 [TBL] [Abstract][Full Text] [Related]
14. Molecular cloning and analysis of strictosidine beta-D-glucosidase, an enzyme in terpenoid indole alkaloid biosynthesis in Catharanthus roseus. Geerlings A; Ibañez MM; Memelink J; van Der Heijden R; Verpoorte R J Biol Chem; 2000 Feb; 275(5):3051-6. PubMed ID: 10652285 [TBL] [Abstract][Full Text] [Related]
15. Pterin-Dependent Mono-oxidation for the Microbial Synthesis of a Modified Monoterpene Indole Alkaloid. Ehrenworth AM; Sarria S; Peralta-Yahya P ACS Synth Biol; 2015 Dec; 4(12):1295-307. PubMed ID: 26214239 [TBL] [Abstract][Full Text] [Related]
16. Gene Discovery in Gelsemium Highlights Conserved Gene Clusters in Monoterpene Indole Alkaloid Biosynthesis. Franke J; Kim J; Hamilton JP; Zhao D; Pham GM; Wiegert-Rininger K; Crisovan E; Newton L; Vaillancourt B; Tatsis E; Buell CR; O'Connor SE Chembiochem; 2019 Jan; 20(1):83-87. PubMed ID: 30300974 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of Biosynthetic Pathway and Engineered Biosynthesis of Alkaloids. Kishimoto S; Sato M; Tsunematsu Y; Watanabe K Molecules; 2016 Aug; 21(8):. PubMed ID: 27548127 [TBL] [Abstract][Full Text] [Related]
18. An NPF transporter exports a central monoterpene indole alkaloid intermediate from the vacuole. Payne RM; Xu D; Foureau E; Teto Carqueijeiro MI; Oudin A; Bernonville TD; Novak V; Burow M; Olsen CE; Jones DM; Tatsis EC; Pendle A; Ann Halkier B; Geu-Flores F; Courdavault V; Nour-Eldin HH; O'Connor SE Nat Plants; 2017 Jan; 3():16208. PubMed ID: 28085153 [TBL] [Abstract][Full Text] [Related]
19. Silencing of tryptamine biosynthesis for production of nonnatural alkaloids in plant culture. Runguphan W; Maresh JJ; O'Connor SE Proc Natl Acad Sci U S A; 2009 Aug; 106(33):13673-8. PubMed ID: 19666570 [TBL] [Abstract][Full Text] [Related]
20. Endophytes enhance the production of root alkaloids ajmalicine and serpentine by modulating the terpenoid indole alkaloid pathway in Catharanthus roseus roots. Singh S; Pandey SS; Shanker K; Kalra A J Appl Microbiol; 2020 Apr; 128(4):1128-1142. PubMed ID: 31821696 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]