These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
779 related articles for article (PubMed ID: 25675955)
1. Transcriptome and metabolome reprogramming in Vitis vinifera cv. Trincadeira berries upon infection with Botrytis cinerea. Agudelo-Romero P; Erban A; Rego C; Carbonell-Bejerano P; Nascimento T; Sousa L; Martínez-Zapater JM; Kopka J; Fortes AM J Exp Bot; 2015 Apr; 66(7):1769-85. PubMed ID: 25675955 [TBL] [Abstract][Full Text] [Related]
2. The study of hormonal metabolism of Trincadeira and Syrah cultivars indicates new roles of salicylic acid, jasmonates, ABA and IAA during grape ripening and upon infection with Botrytis cinerea. Coelho J; Almeida-Trapp M; Pimentel D; Soares F; Reis P; Rego C; Mithöfer A; Fortes AM Plant Sci; 2019 Jun; 283():266-277. PubMed ID: 31128697 [TBL] [Abstract][Full Text] [Related]
3. Metabolomics reveals simultaneous influences of plant defence system and fungal growth in Botrytis cinerea-infected Vitis vinifera cv. Chardonnay berries. Hong YS; Martinez A; Liger-Belair G; Jeandet P; Nuzillard JM; Cilindre C J Exp Bot; 2012 Oct; 63(16):5773-85. PubMed ID: 22945941 [TBL] [Abstract][Full Text] [Related]
4. Developmental and Metabolic Plasticity of White-Skinned Grape Berries in Response to Botrytis cinerea during Noble Rot. Blanco-Ulate B; Amrine KC; Collins TS; Rivero RM; Vicente AR; Morales-Cruz A; Doyle CL; Ye Z; Allen G; Heymann H; Ebeler SE; Cantu D Plant Physiol; 2015 Dec; 169(4):2422-43. PubMed ID: 26450706 [TBL] [Abstract][Full Text] [Related]
5. Molecular analysis of the early interaction between the grapevine flower and Botrytis cinerea reveals that prompt activation of specific host pathways leads to fungus quiescence. Haile ZM; Pilati S; Sonego P; Malacarne G; Vrhovsek U; Engelen K; Tudzynski P; Zottini M; Baraldi E; Moser C Plant Cell Environ; 2017 Aug; 40(8):1409-1428. PubMed ID: 28239986 [TBL] [Abstract][Full Text] [Related]
6. Grapevine NAC1 transcription factor as a convergent node in developmental processes, abiotic stresses, and necrotrophic/biotrophic pathogen tolerance. Le Hénanff G; Profizi C; Courteaux B; Rabenoelina F; Gérard C; Clément C; Baillieul F; Cordelier S; Dhondt-Cordelier S J Exp Bot; 2013 Nov; 64(16):4877-93. PubMed ID: 24043850 [TBL] [Abstract][Full Text] [Related]
7. Transcript and metabolite analysis in Trincadeira cultivar reveals novel information regarding the dynamics of grape ripening. Fortes AM; Agudelo-Romero P; Silva MS; Ali K; Sousa L; Maltese F; Choi YH; Grimplet J; Martinez-Zapater JM; Verpoorte R; Pais MS BMC Plant Biol; 2011 Nov; 11():149. PubMed ID: 22047180 [TBL] [Abstract][Full Text] [Related]
8. Analysis of the Molecular Dialogue Between Gray Mold (Botrytis cinerea) and Grapevine (Vitis vinifera) Reveals a Clear Shift in Defense Mechanisms During Berry Ripening. Kelloniemi J; Trouvelot S; Héloir MC; Simon A; Dalmais B; Frettinger P; Cimerman A; Fermaud M; Roudet J; Baulande S; Bruel C; Choquer M; Couvelard L; Duthieuw M; Ferrarini A; Flors V; Le Pêcheur P; Loisel E; Morgant G; Poussereau N; Pradier JM; Rascle C; Trdá L; Poinssot B; Viaud M Mol Plant Microbe Interact; 2015 Nov; 28(11):1167-80. PubMed ID: 26267356 [TBL] [Abstract][Full Text] [Related]
9. Genome-wide identification and expression analysis reveal the potential function of ethylene responsive factor gene family in response to Botrytis cinerea infection and ovule development in grapes (Vitis vinifera L.). Zhu Y; Li Y; Zhang S; Zhang X; Yao J; Luo Q; Sun F; Wang X Plant Biol (Stuttg); 2019 Jul; 21(4):571-584. PubMed ID: 30468551 [TBL] [Abstract][Full Text] [Related]
10. Molecular basis of ergosterol-induced protection of grape against botrytis cinerea: induction of type I LTP promoter activity, WRKY, and stilbene synthase gene expression. Laquitaine L; Gomès E; François J; Marchive C; Pascal S; Hamdi S; Atanassova R; Delrot S; Coutos-Thévenot P Mol Plant Microbe Interact; 2006 Oct; 19(10):1103-12. PubMed ID: 17022174 [TBL] [Abstract][Full Text] [Related]
11. Transcriptional, hormonal, and metabolic changes in susceptible grape berries under powdery mildew infection. Pimentel D; Amaro R; Erban A; Mauri N; Soares F; Rego C; Martínez-Zapater JM; Mithöfer A; Kopka J; Fortes AM J Exp Bot; 2021 Sep; 72(18):6544-6569. PubMed ID: 34106234 [TBL] [Abstract][Full Text] [Related]
12. The SWEET family of sugar transporters in grapevine: VvSWEET4 is involved in the interaction with Botrytis cinerea. Chong J; Piron MC; Meyer S; Merdinoglu D; Bertsch C; Mestre P J Exp Bot; 2014 Dec; 65(22):6589-601. PubMed ID: 25246444 [TBL] [Abstract][Full Text] [Related]
13. The transcription factor VvWRKY33 is involved in the regulation of grapevine (Vitis vinifera) defense against the oomycete pathogen Plasmopara viticola. Merz PR; Moser T; Höll J; Kortekamp A; Buchholz G; Zyprian E; Bogs J Physiol Plant; 2015 Mar; 153(3):365-80. PubMed ID: 25132131 [TBL] [Abstract][Full Text] [Related]
14. Thermotolerance responses in ripening berries of Vitis vinifera L. cv Muscat Hamburg. Carbonell-Bejerano P; Santa María E; Torres-Pérez R; Royo C; Lijavetzky D; Bravo G; Aguirreolea J; Sánchez-Díaz M; Antolín MC; Martínez-Zapater JM Plant Cell Physiol; 2013 Jul; 54(7):1200-16. PubMed ID: 23659918 [TBL] [Abstract][Full Text] [Related]
15. Transcriptional and metabolic profiling of grape (Vitis vinifera L.) leaves unravel possible innate resistance against pathogenic fungi. Figueiredo A; Fortes AM; Ferreira S; Sebastiana M; Choi YH; Sousa L; Acioli-Santos B; Pessoa F; Verpoorte R; Pais MS J Exp Bot; 2008; 59(12):3371-81. PubMed ID: 18648103 [TBL] [Abstract][Full Text] [Related]
16. Combined Metabolite and Transcriptome Profiling Reveals the Norisoprenoid Responses in Grape Berries to Abscisic Acid and Synthetic Auxin. He L; Meng N; Castellarin SD; Wang Y; Sun Q; Li XY; Dong ZG; Tang XP; Duan CQ; Pan QH Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33572582 [TBL] [Abstract][Full Text] [Related]
17. Osmotic stress-induced polyamine oxidation mediates defence responses and reduces stress-enhanced grapevine susceptibility to Botrytis cinerea. Hatmi S; Trotel-Aziz P; Villaume S; Couderchet M; Clément C; Aziz A J Exp Bot; 2014 Jan; 65(1):75-88. PubMed ID: 24170740 [TBL] [Abstract][Full Text] [Related]
18. Ripening and genotype control stilbene accumulation in healthy grapes. Gatto P; Vrhovsek U; Muth J; Segala C; Romualdi C; Fontana P; Pruefer D; Stefanini M; Moser C; Mattivi F; Velasco R J Agric Food Chem; 2008 Dec; 56(24):11773-85. PubMed ID: 19032022 [TBL] [Abstract][Full Text] [Related]
19. Virulence-related metabolism is activated in Soares F; Pimentel D; Erban A; Neves C; Reis P; Pereira M; Rego C; Gama-Carvalho M; Kopka J; Fortes AM Hortic Res; 2022; 9():uhac217. PubMed ID: 36479580 [No Abstract] [Full Text] [Related]
20. Response of direct or priming defense against Botrytis cinerea to methyl jasmonate treatment at different concentrations in grape berries. Wang K; Liao Y; Kan J; Han L; Zheng Y Int J Food Microbiol; 2015 Feb; 194():32-9. PubMed ID: 25461606 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]