These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
779 related articles for article (PubMed ID: 25675955)
21. Transcriptomics of the grape berry shrivel ripening disorder. Savoi S; Herrera JC; Forneck A; Griesser M Plant Mol Biol; 2019 Jun; 100(3):285-301. PubMed ID: 30941542 [TBL] [Abstract][Full Text] [Related]
22. Global transcriptome analysis and differentially expressed genes in grapevine after application of the yeast-derived defense inducer cerevisane. De Miccolis Angelini RM; Rotolo C; Gerin D; Abate D; Pollastro S; Faretra F Pest Manag Sci; 2019 Jul; 75(7):2020-2033. PubMed ID: 30610743 [TBL] [Abstract][Full Text] [Related]
23. Effect of lime-induced leaf chlorosis on ochratoxin A, trans-resveratrol, and epsilon-viniferin production in grapevine (Vitis vinifera L.) berries infected by Aspergillus carbonarius. Bavaresco L; Vezzulli S; Civardi S; Gatti M; Battilani P; Pietri A; Ferrari F J Agric Food Chem; 2008 Mar; 56(6):2085-9. PubMed ID: 18290620 [TBL] [Abstract][Full Text] [Related]
24. Investigation of the role of AcTPR2 in kiwifruit and its response to Botrytis cinerea infection. Li ZX; Lan JB; Liu YQ; Qi LW; Tang JM BMC Plant Biol; 2020 Dec; 20(1):557. PubMed ID: 33302873 [TBL] [Abstract][Full Text] [Related]
25. Changes in transcription of cytokinin metabolism and signalling genes in grape (Vitis vinifera L.) berries are associated with the ripening-related increase in isopentenyladenine. Böttcher C; Burbidge CA; Boss PK; Davies C BMC Plant Biol; 2015 Sep; 15():223. PubMed ID: 26377914 [TBL] [Abstract][Full Text] [Related]
26. VpSTS29/STS2 enhances fungal tolerance in grapevine through a positive feedback loop. Xu W; Ma F; Li R; Zhou Q; Yao W; Jiao Y; Zhang C; Zhang J; Wang X; Xu Y; Wang Y Plant Cell Environ; 2019 Nov; 42(11):2979-2998. PubMed ID: 31309591 [TBL] [Abstract][Full Text] [Related]
27. Oviposition preference and larval performance of Epiphyas postvittana (Lepidoptera: Tortricidae) on Botrytis cinerea (Helotiales: Sclerotiniaceae) infected berries of Vitis vinifera (Vitales: Vitaceae). Rizvi SZ; Raman A; Wheatley WM; Cook G Insect Sci; 2016 Apr; 23(2):313-25. PubMed ID: 25420720 [TBL] [Abstract][Full Text] [Related]
28. Dual Mode of Action of Grape Cane Extracts against Botrytis cinerea. De Bona GS; Adrian M; Negrel J; Chiltz A; Klinguer A; Poinssot B; Héloir MC; Angelini E; Vincenzi S; Bertazzon N J Agric Food Chem; 2019 May; 67(19):5512-5520. PubMed ID: 31008600 [TBL] [Abstract][Full Text] [Related]
29. Transcriptome analysis at four developmental stages of grape berry (Vitis vinifera cv. Shiraz) provides insights into regulated and coordinated gene expression. Sweetman C; Wong DC; Ford CM; Drew DP BMC Genomics; 2012 Dec; 13():691. PubMed ID: 23227855 [TBL] [Abstract][Full Text] [Related]
30. Sulphur dioxide evokes a large scale reprogramming of the grape berry transcriptome associated with oxidative signalling and biotic defence responses. Giraud E; Ivanova A; Gordon CS; Whelan J; Considine MJ Plant Cell Environ; 2012 Feb; 35(2):405-17. PubMed ID: 21689113 [TBL] [Abstract][Full Text] [Related]
31. Impact of Miotto-Vilanova L; Courteaux B; Padilla R; Rabenoelina F; Jacquard C; Clément C; Comte G; Lavire C; Ait Barka E; Kerzaon I; Sanchez L Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31744149 [TBL] [Abstract][Full Text] [Related]
32. Combined physiological, transcriptome, and cis-regulatory element analyses indicate that key aspects of ripening, metabolism, and transcriptional program in grapes (Vitis vinifera L.) are differentially modulated accordingly to fruit size. Wong DC; Lopez Gutierrez R; Dimopoulos N; Gambetta GA; Castellarin SD BMC Genomics; 2016 May; 17():416. PubMed ID: 27245662 [TBL] [Abstract][Full Text] [Related]
33. Genome-wide transcriptional analysis of grapevine berry ripening reveals a set of genes similarly modulated during three seasons and the occurrence of an oxidative burst at vèraison. Pilati S; Perazzolli M; Malossini A; Cestaro A; Demattè L; Fontana P; Dal Ri A; Viola R; Velasco R; Moser C BMC Genomics; 2007 Nov; 8():428. PubMed ID: 18034875 [TBL] [Abstract][Full Text] [Related]
34. Pre-véraison treatment of salicylic acid to enhance anthocyanin content of grape (Vitis vinifera L.) berries. Oraei M; Panahirad S; Zaare-Nahandi F; Gohari G J Sci Food Agric; 2019 Oct; 99(13):5946-5952. PubMed ID: 31206683 [TBL] [Abstract][Full Text] [Related]
35. Modulation of volatile compound metabolome and transcriptome in grape berries exposed to sunlight under dry-hot climate. He L; Xu XQ; Wang Y; Chen WK; Sun RZ; Cheng G; Liu B; Chen W; Duan CQ; Wang J; Pan QH BMC Plant Biol; 2020 Feb; 20(1):59. PubMed ID: 32019505 [TBL] [Abstract][Full Text] [Related]
36. Comparative RNA-Seq analysis reveals a critical role for brassinosteroids in rose (Rosa hybrida) petal defense against Botrytis cinerea infection. Liu X; Cao X; Shi S; Zhao N; Li D; Fang P; Chen X; Qi W; Zhang Z BMC Genet; 2018 Aug; 19(1):62. PubMed ID: 30126371 [TBL] [Abstract][Full Text] [Related]
37. Perturbation of polyamine catabolism affects grape ripening of Vitis vinifera cv. Trincadeira. Agudelo-Romero P; Ali K; Choi YH; Sousa L; Verpoorte R; Tiburcio AF; Fortes AM Plant Physiol Biochem; 2014 Jan; 74():141-55. PubMed ID: 24296250 [TBL] [Abstract][Full Text] [Related]
38. Interactions between ethylene and auxin are crucial to the control of grape (Vitis vinifera L.) berry ripening. Böttcher C; Burbidge CA; Boss PK; Davies C BMC Plant Biol; 2013 Dec; 13():222. PubMed ID: 24364881 [TBL] [Abstract][Full Text] [Related]
39. Tracking cell wall changes in wine and table grapes undergoing Botrytis cinerea infection using glycan microarrays. Weiller F; Schückel J; Willats WGT; Driouich A; Vivier MA; Moore JP Ann Bot; 2021 Sep; 128(5):527-543. PubMed ID: 34192306 [TBL] [Abstract][Full Text] [Related]
40. RNA-seq based transcriptomic analysis of CPPU treated grape berries and emission of volatile compounds. Wang W; Khalil-Ur-Rehman M; Feng J; Tao J J Plant Physiol; 2017 Nov; 218():155-166. PubMed ID: 28843071 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]