These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 25676)
1. Stacking interactions between aromatic amino acids and adenine ring of ATP in zinc mediated ternary complexes. Toulme JJ Bioinorg Chem; 1978 Apr; 8(4):319-29. PubMed ID: 25676 [TBL] [Abstract][Full Text] [Related]
2. Structural studies of metalloporphyrins. Part XIa: Complexes of water-soluble zinc(II) porphyrins with amino acids: influence of ligand-ligand interactions on the stability of the complexes. Verchére-Bèaur C; Mikros E; Perrèe-Fauvet M; Gaudemer A J Inorg Biochem; 1990 Oct; 40(2):127-39. PubMed ID: 2092077 [TBL] [Abstract][Full Text] [Related]
3. Evidence for two aromatic amino acid-binding sites, one ATP-dependent and the other ATP-independent, in the Escherichia coli regulatory protein TyrR. Wilson TJ; Argaet VP; Howlett GJ; Davidson BE Mol Microbiol; 1995 Aug; 17(3):483-92. PubMed ID: 8559067 [TBL] [Abstract][Full Text] [Related]
4. On the interaction between flavin-adenine rings and between flavin-indole rings by X-ray structural studies. Inoue M; Okuda Y; Ishida T; Nakagaki M Arch Biochem Biophys; 1983 Nov; 227(1):52-70. PubMed ID: 6639083 [TBL] [Abstract][Full Text] [Related]
5. On the metal-ion coordinating properties of the 5'-monophosphates of 1, N6-ethenoadenosine (epsilon-AMP), adenosine and uridine. Comparison of the macrochelate formation in the complexes of epsilon-AMP, AMP, ADP and ATP. Sigel H; Scheller KH Eur J Biochem; 1984 Jan; 138(2):291-9. PubMed ID: 6321171 [TBL] [Abstract][Full Text] [Related]
6. Characterization of an NH-pi interaction in Co(III) ternary complexes with aromatic amino acids. Kumita H; Kato T; Jitsukawa K; Einaga H; Masuda H Inorg Chem; 2001 Jul; 40(16):3936-42. PubMed ID: 11466051 [TBL] [Abstract][Full Text] [Related]
7. Comparison of the metal-ion-promoted dephosphorylation of the 5'-triphosphates of adenosine, inosine, guanosine and cytidine by Mn2+, Ni2+ and Zn2+ in binary and ternary complexes. Amsler PE; Sigel H Eur J Biochem; 1976 Apr; 63(2):569-81. PubMed ID: 4327 [TBL] [Abstract][Full Text] [Related]
8. Pi-pi stacking assisted binding of aromatic amino acids by copper(II)-aromatic diimine complexes. Effects of ring substituents on ternary complex stability. Yajima T; Takamido R; Shimazaki Y; Odani A; Nakabayashi Y; Yamauchi O Dalton Trans; 2007 Jan; (3):299-307. PubMed ID: 17200749 [TBL] [Abstract][Full Text] [Related]
9. A spectrophotometric study of the binding of Cu(II) ions to ATP. Onori G Biophys Chem; 1987 Dec; 28(3):183-90. PubMed ID: 3440120 [TBL] [Abstract][Full Text] [Related]
10. An investigation by Raman spectroscopy of the base-proton dissociation of ATP in aqueous solution and the interactions of ATP with Zn++ and Mn++. Rimai L; Heyde ME Biochem Biophys Res Commun; 1970 Oct; 41(2):313-20. PubMed ID: 5518163 [No Abstract] [Full Text] [Related]
11. Interaction of aromatic amino acids with neutral polyadenylic acid. Raszka M; Mandel M Proc Natl Acad Sci U S A; 1971 Jun; 68(6):1190-1. PubMed ID: 5288367 [TBL] [Abstract][Full Text] [Related]
12. Stability and structure of mixed-ligand metal ion complexes that contain Ni2+, Cu2+, or Zn2+, and Histamine, as well as adenosine 5'-triphosphate (ATP4-) or uridine 5'-triphosphate (UTP(4-): an intricate network of equilibria. Knobloch B; Mucha A; Operschall BP; Sigel H; Jeżowska-Bojczuk M; Kozłowski H; Sigel RK Chemistry; 2011 May; 17(19):5393-403. PubMed ID: 21465580 [TBL] [Abstract][Full Text] [Related]
13. [Interaction of aromatic residues of proteins with nucleic acids. Circular dichroism studies of the binding of oligopeptides to poly(adenylic acid)]. Durand M; Maurizot JC; Borazan HN; Hélène C Biochemistry; 1975 Feb; 14(3):563-70. PubMed ID: 234246 [TBL] [Abstract][Full Text] [Related]
14. Ternary complexes in solution. Bridging of the stacked adduct between tryptophan and adenosine 5'-triphosphate by zinc(II). Naumann CF; Sigel H FEBS Lett; 1974 Oct; 47(1):122-4. PubMed ID: 4426384 [No Abstract] [Full Text] [Related]
15. Complexation of Al(III) by aromatic amino acids in the gas phase. Rezabal E; Marino T; Mercero JM; Russo N; Ugalde JM Inorg Chem; 2007 Aug; 46(16):6413-9. PubMed ID: 17608416 [TBL] [Abstract][Full Text] [Related]
16. Intramolecular stacking interactions in ternary copper(II) complexes formed by a heteroaromatic amine and 9-[2-(2-phosphonoethoxy)ethyl]adenine, a relative of the antiviral nucleotide analogue 9-[2-(phosphonomethoxy)ethyl]adenine. Fernández-Botello A; Holý A; Moreno V; Sigel H J Inorg Biochem; 2004 Dec; 98(12):2114-24. PubMed ID: 15541501 [TBL] [Abstract][Full Text] [Related]
17. Amino/aromatic interactions in proteins: is the evidence stacked against hydrogen bonding? Mitchell JB; Nandi CL; McDonald IK; Thornton JM; Price SL J Mol Biol; 1994 Jun; 239(2):315-31. PubMed ID: 8196060 [TBL] [Abstract][Full Text] [Related]
18. SEPARATION AND PURIFICATION OF AROMATIC AMINO ACID TRANSAMINASES FROM RAT BRAIN. TANGEN O; FONNUM F; HAAVALDSEN R Biochim Biophys Acta; 1965 Jan; 96():82-90. PubMed ID: 14285270 [No Abstract] [Full Text] [Related]
19. Quantitation of aromatic residues in proteins: model compounds for second-derivative spectroscopy. Levine RL; Federici MM Biochemistry; 1982 May; 21(11):2600-6. PubMed ID: 7093207 [TBL] [Abstract][Full Text] [Related]
20. Interaction of aromatic units of amino acids with guanidinium cation: The interplay of π···π, X-H···π, and M+ ···π contacts. Campo-Cacharrón A; Cabaleiro-Lago EM; Carrazana-García JA; Rodríguez-Otero J J Comput Chem; 2014 Jun; 35(17):1290-301. PubMed ID: 24771291 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]