These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 25676066)

  • 1. Characterization of the activity of the spore cortex lytic enzyme CwlJ1.
    Wu X; Grover N; Paskaleva EE; Mundra RV; Page MA; Kane RS; Dordick JS
    Biotechnol Bioeng; 2015 Jul; 112(7):1365-75. PubMed ID: 25676066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Roles of germination-specific lytic enzymes CwlJ and SleB in Bacillus anthracis.
    Heffron JD; Orsburn B; Popham DL
    J Bacteriol; 2009 Apr; 191(7):2237-47. PubMed ID: 19181808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contributions of four cortex lytic enzymes to germination of Bacillus anthracis spores.
    Heffron JD; Lambert EA; Sherry N; Popham DL
    J Bacteriol; 2010 Feb; 192(3):763-70. PubMed ID: 19966006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel spore peptidoglycan hydrolase of Bacillus cereus: biochemical characterization and nucleotide sequence of the corresponding gene, sleL.
    Chen Y; Fukuoka S; Makino S
    J Bacteriol; 2000 Mar; 182(6):1499-506. PubMed ID: 10692353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cortex peptidoglycan lytic activity in germinating Bacillus anthracis spores.
    Dowd MM; Orsburn B; Popham DL
    J Bacteriol; 2008 Jul; 190(13):4541-8. PubMed ID: 18456807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The germination-specific lytic enzymes SleB, CwlJ1, and CwlJ2 each contribute to Bacillus anthracis spore germination and virulence.
    Giebel JD; Carr KA; Anderson EC; Hanna PC
    J Bacteriol; 2009 Sep; 191(18):5569-76. PubMed ID: 19581364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of muramic delta-lactam in Bacillus subtilis spore peptidoglycan.
    Gilmore ME; Bandyopadhyay D; Dean AM; Linnstaedt SD; Popham DL
    J Bacteriol; 2004 Jan; 186(1):80-9. PubMed ID: 14679227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro and in vivo analyses of the Bacillus anthracis spore cortex lytic protein SleL.
    Lambert EA; Sherry N; Popham DL
    Microbiology (Reading); 2012 May; 158(Pt 5):1359-1368. PubMed ID: 22343356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of AmiBA2446, a novel bacteriolytic enzyme active against Bacillus species.
    Mehta KK; Paskaleva EE; Azizi-Ghannad S; Ley DJ; Page MA; Dordick JS; Kane RS
    Appl Environ Microbiol; 2013 Oct; 79(19):5899-906. PubMed ID: 23872558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muramic lactam in peptidoglycan of Bacillus subtilis spores is required for spore outgrowth but not for spore dehydration or heat resistance.
    Popham DL; Helin J; Costello CE; Setlow P
    Proc Natl Acad Sci U S A; 1996 Dec; 93(26):15405-10. PubMed ID: 8986824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Partial characterization of an enzyme fraction with protease activity which converts the spore peptidoglycan hydrolase (SleC) precursor to an active enzyme during germination of Clostridium perfringens S40 spores and analysis of a gene cluster involved in the activity.
    Shimamoto S; Moriyama R; Sugimoto K; Miyata S; Makino S
    J Bacteriol; 2001 Jun; 183(12):3742-51. PubMed ID: 11371539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular characterization of a germination-specific muramidase from Clostridium perfringens S40 spores and nucleotide sequence of the corresponding gene.
    Chen Y; Miyata S; Makino S; Moriyama R
    J Bacteriol; 1997 May; 179(10):3181-7. PubMed ID: 9150212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Existence of separate domains in lysin PlyG for recognizing Bacillus anthracis spores and vegetative cells.
    Yang H; Wang DB; Dong Q; Zhang Z; Cui Z; Deng J; Yu J; Zhang XE; Wei H
    Antimicrob Agents Chemother; 2012 Oct; 56(10):5031-9. PubMed ID: 22802245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New aspects of the infection mechanisms of Bacillus anthracis.
    Zakowska D; Bartoszcze M; Niemcewicz M; Bielawska-Drózd A; Kocik J
    Ann Agric Environ Med; 2012; 19(4):613-8. PubMed ID: 23311776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural analysis of Bacillus subtilis 168 endospore peptidoglycan and its role during differentiation.
    Atrih A; Zöllner P; Allmaier G; Foster SJ
    J Bacteriol; 1996 Nov; 178(21):6173-83. PubMed ID: 8892816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Bacillus anthracis SleL (YaaH) protein is an N-acetylglucosaminidase involved in spore cortex depolymerization.
    Lambert EA; Popham DL
    J Bacteriol; 2008 Dec; 190(23):7601-7. PubMed ID: 18835992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mode of action of a germination-specific cortex-lytic enzyme, SleC, of Clostridium perfringens S40.
    Kumazawa T; Masayama A; Fukuoka S; Makino S; Yoshimura T; Moriyama R
    Biosci Biotechnol Biochem; 2007 Apr; 71(4):884-92. PubMed ID: 17420590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mode of action of Clostridium perfringens initiation protein (spore-lytic enzyme).
    Tang SS; Labbé RG
    Ann Inst Pasteur Microbiol; 1987; 138(6):597-608. PubMed ID: 2900019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the catalytic activity of the gamma-phage lysin, PlyG, specific for Bacillus anthracis.
    Kikkawa HS; Ueda T; Suzuki S; Yasuda J
    FEMS Microbiol Lett; 2008 Sep; 286(2):236-40. PubMed ID: 18662316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmid-encoded autolysin in Bacillus anthracis: modular structure and catalytic properties.
    Mesnage S; Fouet A
    J Bacteriol; 2002 Jan; 184(1):331-4. PubMed ID: 11741877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.