These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 25676167)

  • 1. Multi-motion robots control based on bioelectric signals from single-channel dry electrode.
    Shen HM; Hu L; Lee KM; Fu X
    Proc Inst Mech Eng H; 2015 Feb; 229(2):124-36. PubMed ID: 25676167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel human--machine interface based on recognition of multi-channel facial bioelectric signals.
    Mohammad Rezazadeh I; Firoozabadi SM; Hu H; Hashemi Golpayegani SM
    Australas Phys Eng Sci Med; 2011 Dec; 34(4):497-513. PubMed ID: 22124948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of virtual keyboard using blink control method for the severely disabled.
    Yang SW; Lin CS; Lin SK; Lee CH
    Comput Methods Programs Biomed; 2013 Aug; 111(2):410-8. PubMed ID: 23702128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A supplementary system for a brain-machine interface based on jaw artifacts for the bidimensional control of a robotic arm.
    Costa Á; Hortal E; Iáñez E; Azorín JM
    PLoS One; 2014; 9(11):e112352. PubMed ID: 25390372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An EMG-based robot control scheme robust to time-varying EMG signal features.
    Artemiadis PK; Kyriakopoulos KJ
    IEEE Trans Inf Technol Biomed; 2010 May; 14(3):582-8. PubMed ID: 20172839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quality assessment of electroencephalography obtained from a "dry electrode" system.
    Slater JD; Kalamangalam GP; Hope O
    J Neurosci Methods; 2012 Jul; 208(2):134-7. PubMed ID: 22633894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel Multipin Electrode Cap System for Dry Electroencephalography.
    Fiedler P; Pedrosa P; Griebel S; Fonseca C; Vaz F; Supriyanto E; Zanow F; Haueisen J
    Brain Topogr; 2015 Sep; 28(5):647-656. PubMed ID: 25998854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wireless instrumentation system based on dry electrodes for acquiring EEG signals.
    Dias NS; Carmo JP; Mendes PM; Correia JH
    Med Eng Phys; 2012 Sep; 34(7):972-81. PubMed ID: 22153322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design Principles and Dynamic Front End Reconfiguration for Low Noise EEG Acquisition With Finger Based Dry Electrodes.
    Nathan V; Jafari R
    IEEE Trans Biomed Circuits Syst; 2015 Oct; 9(5):631-40. PubMed ID: 26462239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GOM-Face: GKP, EOG, and EMG-based multimodal interface with application to humanoid robot control.
    Nam Y; Koo B; Cichocki A; Choi S
    IEEE Trans Biomed Eng; 2014 Feb; 61(2):453-62. PubMed ID: 24021635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain-computer interface combining eye saccade two-electrode EEG signals and voice cues to improve the maneuverability of wheelchair.
    Wang KJ; Zhang L; Luan B; Tung HW; Liu Q; Wei J; Sun M; Mao ZH
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1073-1078. PubMed ID: 28813964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust EMG sensing system based on data fusion for myoelectric control of a robotic arm.
    López NM; di Sciascio F; Soria CM; Valentinuzzi ME
    Biomed Eng Online; 2009 Feb; 8():5. PubMed ID: 19243627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Channel selection and classification of electroencephalogram signals: an artificial neural network and genetic algorithm-based approach.
    Yang J; Singh H; Hines EL; Schlaghecken F; Iliescu DD; Leeson MS; Stocks NG
    Artif Intell Med; 2012 Jun; 55(2):117-26. PubMed ID: 22503644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel EOG/EEG hybrid human-machine interface adopting eye movements and ERPs: application to robot control.
    Ma J; Zhang Y; Cichocki A; Matsuno F
    IEEE Trans Biomed Eng; 2015 Mar; 62(3):876-89. PubMed ID: 25398172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study on a robot arm driven by three-dimensional trajectories predicted from non-invasive neural signals.
    Kim YJ; Park SW; Yeom HG; Bang MS; Kim JS; Chung CK; Kim S
    Biomed Eng Online; 2015 Aug; 14():81. PubMed ID: 26290069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic removal of eye-movement and blink artifacts from EEG signals.
    Gao JF; Yang Y; Lin P; Wang P; Zheng CX
    Brain Topogr; 2010 Mar; 23(1):105-14. PubMed ID: 20039116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A user-friendly SSVEP-based brain-computer interface using a time-domain classifier.
    Luo A; Sullivan TJ
    J Neural Eng; 2010 Apr; 7(2):26010. PubMed ID: 20332551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An EEG-based BCI system for 2-D cursor control by combining Mu/Beta rhythm and P300 potential.
    Li Y; Long J; Yu T; Yu Z; Wang C; Zhang H; Guan C
    IEEE Trans Biomed Eng; 2010 Oct; 57(10):2495-505. PubMed ID: 20615806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling a human-computer interface system with a novel classification method that uses electrooculography signals.
    Wu SL; Liao LD; Lu SW; Jiang WL; Chen SA; Lin CT
    IEEE Trans Biomed Eng; 2013 Aug; 60(8):2133-41. PubMed ID: 23446030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.