These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. 3D printing of biomaterials with mussel-inspired nanostructures for tumor therapy and tissue regeneration. Ma H; Luo J; Sun Z; Xia L; Shi M; Liu M; Chang J; Wu C Biomaterials; 2016 Dec; 111():138-148. PubMed ID: 27728813 [TBL] [Abstract][Full Text] [Related]
3. Dual functions of gold nanorods as photothermal agent and autofluorescence enhancer to track cell death during plasmonic photothermal therapy. Kannadorai RK; Chiew GGY; Luo KQ; Liu Q Cancer Lett; 2015 Feb; 357(1):152-159. PubMed ID: 25444933 [TBL] [Abstract][Full Text] [Related]
4. Light-induced generation of singlet oxygen by naked gold nanoparticles and its implications to cancer cell phototherapy. Pasparakis G Small; 2013 Dec; 9(24):4130-4. PubMed ID: 23813944 [TBL] [Abstract][Full Text] [Related]
5. Proof of concept of plasmonic thermal destruction of surface cancers by gold nanoparticles obtained by green chemistry. Haddada MB; Koshel D; Yang Z; Fu W; Spadavecchia J; Pesnel S; Morel AL Colloids Surf B Biointerfaces; 2019 Dec; 184():110496. PubMed ID: 31525600 [TBL] [Abstract][Full Text] [Related]
6. In-situ formation and assembly of gold nanoparticles by gum arabic as efficient photothermal agent for killing cancer cells. Liu CP; Lin FS; Chien CT; Tseng SY; Luo CW; Chen CH; Chen JK; Tseng FG; Hwu Y; Lo LW; Yang CS; Lin SY Macromol Biosci; 2013 Oct; 13(10):1314-20. PubMed ID: 23861238 [TBL] [Abstract][Full Text] [Related]
7. pH-responsive gold nanoparticles-in-liposome hybrid nanostructures for enhanced systemic tumor delivery. Nam J; Ha YS; Hwang S; Lee W; Song J; Yoo J; Kim S Nanoscale; 2013 Nov; 5(21):10175-8. PubMed ID: 24057056 [TBL] [Abstract][Full Text] [Related]
8. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Jain PK; Huang X; El-Sayed IH; El-Sayed MA Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366 [TBL] [Abstract][Full Text] [Related]
9. Au-Ag@Au Hollow Nanostructure with Enhanced Chemical Stability and Improved Photothermal Transduction Efficiency for Cancer Treatment. Jiang T; Song J; Zhang W; Wang H; Li X; Xia R; Zhu L; Xu X ACS Appl Mater Interfaces; 2015 Oct; 7(39):21985-94. PubMed ID: 26371629 [TBL] [Abstract][Full Text] [Related]
10. Light-Triggered Covalent Coupling of Gold Nanoparticles for Photothermal Cancer Therapy. Xia H; Gao Y; Yin L; Cheng X; Wang A; Zhao M; Ding J; Shi H Chembiochem; 2019 Mar; 20(5):667-671. PubMed ID: 30447100 [TBL] [Abstract][Full Text] [Related]
11. Gold over Branched Palladium Nanostructures for Photothermal Cancer Therapy. McGrath AJ; Chien YH; Cheong S; Herman DA; Watt J; Henning AM; Gloag L; Yeh CS; Tilley RD ACS Nano; 2015 Dec; 9(12):12283-91. PubMed ID: 26549201 [TBL] [Abstract][Full Text] [Related]
12. Photothermal Effect and Multi-Modality Imaging of Up-Conversion Nanomaterial Doped with Gold Nanoparticles. Zhang W; Zang Y; Lu Y; Han J; Xiong Q; Xiong J Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163306 [TBL] [Abstract][Full Text] [Related]
13. Understanding the photothermal conversion efficiency of gold nanocrystals. Chen H; Shao L; Ming T; Sun Z; Zhao C; Yang B; Wang J Small; 2010 Oct; 6(20):2272-80. PubMed ID: 20827680 [TBL] [Abstract][Full Text] [Related]
14. High specific detection and near-infrared photothermal therapy of lung cancer cells with high SERS active aptamer-silver-gold shell-core nanostructures. Wu P; Gao Y; Lu Y; Zhang H; Cai C Analyst; 2013 Nov; 138(21):6501-10. PubMed ID: 24040647 [TBL] [Abstract][Full Text] [Related]
15. Inherently stealthy and highly tumor-selective gold nanoraspberries for photothermal cancer therapy. Gandra N; Portz C; Nergiz SZ; Fales A; Vo-Dinh T; Singamaneni S Sci Rep; 2015 May; 5():10311. PubMed ID: 25974150 [TBL] [Abstract][Full Text] [Related]
16. Sub-100 nm hollow Au-Ag alloy urchin-shaped nanostructure with ultrahigh density of nanotips for photothermal cancer therapy. Liu Z; Cheng L; Zhang L; Yang Z; Liu Z; Fang J Biomaterials; 2014 Apr; 35(13):4099-107. PubMed ID: 24518389 [TBL] [Abstract][Full Text] [Related]
17. Green synthesis of anisotropic gold nanoparticles for photothermal therapy of cancer. Fazal S; Jayasree A; Sasidharan S; Koyakutty M; Nair SV; Menon D ACS Appl Mater Interfaces; 2014 Jun; 6(11):8080-9. PubMed ID: 24842534 [TBL] [Abstract][Full Text] [Related]
18. Specific cell targeting with nanobody conjugated branched gold nanoparticles for photothermal therapy. Van de Broek B; Devoogdt N; D'Hollander A; Gijs HL; Jans K; Lagae L; Muyldermans S; Maes G; Borghs G ACS Nano; 2011 Jun; 5(6):4319-28. PubMed ID: 21609027 [TBL] [Abstract][Full Text] [Related]
19. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Huang X; Jain PK; El-Sayed IH; El-Sayed MA Lasers Med Sci; 2008 Jul; 23(3):217-28. PubMed ID: 17674122 [TBL] [Abstract][Full Text] [Related]
20. Au@Pt nanostructures: a novel photothermal conversion agent for cancer therapy. Tang J; Jiang X; Wang L; Zhang H; Hu Z; Liu Y; Wu X; Chen C Nanoscale; 2014 Apr; 6(7):3670-8. PubMed ID: 24566522 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]