These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 25676332)
21. Protein-Induced Gold Nanoparticle Assembly for Improving the Photothermal Effect in Cancer Therapy. Wang J; Zhang Y; Jin N; Mao C; Yang M ACS Appl Mater Interfaces; 2019 Mar; 11(12):11136-11143. PubMed ID: 30869510 [TBL] [Abstract][Full Text] [Related]
22. Erythrocyte membrane is an alternative coating to polyethylene glycol for prolonging the circulation lifetime of gold nanocages for photothermal therapy. Piao JG; Wang L; Gao F; You YZ; Xiong Y; Yang L ACS Nano; 2014 Oct; 8(10):10414-25. PubMed ID: 25286086 [TBL] [Abstract][Full Text] [Related]
23. Near-infrared Light Activatable Multimodal Gold Nanostructures Platform: An Emerging Paradigm for Cancer Therapy. Jiang Y; Fei W; Cen X; Tang Y; Liang X Curr Cancer Drug Targets; 2015; 15(5):406-22. PubMed ID: 25847011 [TBL] [Abstract][Full Text] [Related]
24. Construction of stable chainlike Au nanostructures via silica coating and exploration for potential photothermal therapy. Yin Z; Zhang W; Fu Q; Yue H; Wei W; Tang P; Li W; Li W; Lin L; Ma G; Ma D Small; 2014 Sep; 10(18):3619-24. PubMed ID: 24861373 [TBL] [Abstract][Full Text] [Related]
25. Double-walled Au nanocage/SiO2 nanorattles: integrating SERS imaging, drug delivery and photothermal therapy. Hu F; Zhang Y; Chen G; Li C; Wang Q Small; 2015 Feb; 11(8):985-93. PubMed ID: 25348096 [TBL] [Abstract][Full Text] [Related]
26. Dendrimer-Stabilized Gold Nanostars as a Multifunctional Theranostic Nanoplatform for CT Imaging, Photothermal Therapy, and Gene Silencing of Tumors. Wei P; Chen J; Hu Y; Li X; Wang H; Shen M; Shi X Adv Healthc Mater; 2016 Dec; 5(24):3203-3213. PubMed ID: 27901317 [TBL] [Abstract][Full Text] [Related]
27. Salt-induced aggregation of gold nanoparticles for photoacoustic imaging and photothermal therapy of cancer. Sun M; Liu F; Zhu Y; Wang W; Hu J; Liu J; Dai Z; Wang K; Wei Y; Bai J; Gao W Nanoscale; 2016 Feb; 8(8):4452-7. PubMed ID: 26847879 [TBL] [Abstract][Full Text] [Related]
28. pH-Induced aggregation of gold nanoparticles for photothermal cancer therapy. Nam J; Won N; Jin H; Chung H; Kim S J Am Chem Soc; 2009 Sep; 131(38):13639-45. PubMed ID: 19772360 [TBL] [Abstract][Full Text] [Related]
29. "Mixed-charge self-assembled monolayers" as a facile method to design pH-induced aggregation of large gold nanoparticles for near-infrared photothermal cancer therapy. Li H; Liu X; Huang N; Ren K; Jin Q; Ji J ACS Appl Mater Interfaces; 2014; 6(21):18930-7. PubMed ID: 25286378 [TBL] [Abstract][Full Text] [Related]
30. Local field enhanced Au/CuS nanocomposites as efficient photothermal transducer agents for cancer treatment. Lakshmanan SB; Zou X; Hossu M; Ma L; Yang C; Chen W J Biomed Nanotechnol; 2012 Dec; 8(6):883-90. PubMed ID: 23029996 [TBL] [Abstract][Full Text] [Related]
31. Theragnostic pH-sensitive gold nanoparticles for the selective surface enhanced Raman scattering and photothermal cancer therapy. Jung S; Nam J; Hwang S; Park J; Hur J; Im K; Park N; Kim S Anal Chem; 2013 Aug; 85(16):7674-81. PubMed ID: 23883363 [TBL] [Abstract][Full Text] [Related]
32. Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly effective photothermal transducers for in vitro cancer cell therapy. Boca SC; Potara M; Gabudean AM; Juhem A; Baldeck PL; Astilean S Cancer Lett; 2011 Dec; 311(2):131-40. PubMed ID: 21840122 [TBL] [Abstract][Full Text] [Related]
33. Mesenchymal Stem Cells Aggregate and Deliver Gold Nanoparticles to Tumors for Photothermal Therapy. Kang S; Bhang SH; Hwang S; Yoon JK; Song J; Jang HK; Kim S; Kim BS ACS Nano; 2015 Oct; 9(10):9678-90. PubMed ID: 26348606 [TBL] [Abstract][Full Text] [Related]
34. Photothermal therapeutic response of cancer cells to aptamer-gold nanoparticle-hybridized graphene oxide under NIR illumination. Yang L; Tseng YT; Suo G; Chen L; Yu J; Chiu WJ; Huang CC; Lin CH ACS Appl Mater Interfaces; 2015 Mar; 7(9):5097-106. PubMed ID: 25705789 [TBL] [Abstract][Full Text] [Related]
35. Lipid-AuNPs@PDA nanohybrid for MRI/CT imaging and photothermal therapy of hepatocellular carcinoma. Zeng Y; Zhang D; Wu M; Liu Y; Zhang X; Li L; Li Z; Han X; Wei X; Liu X ACS Appl Mater Interfaces; 2014 Aug; 6(16):14266-77. PubMed ID: 25090604 [TBL] [Abstract][Full Text] [Related]
36. Synthesis, characterization and application of plasmonic hollow gold nanoshells in a photothermal therapy-New particles for theranostics. Grabowska-Jadach I; Kalinowska D; Drozd M; Pietrzak M Biomed Pharmacother; 2019 Mar; 111():1147-1155. PubMed ID: 30841428 [TBL] [Abstract][Full Text] [Related]
37. Laser generated gold nanocorals with broadband plasmon absorption for photothermal applications. Poletti A; Fracasso G; Conti G; Pilot R; Amendola V Nanoscale; 2015 Aug; 7(32):13702-14. PubMed ID: 26219425 [TBL] [Abstract][Full Text] [Related]
38. Polypyrrole-coated chainlike gold nanoparticle architectures with the 808 nm photothermal transduction efficiency up to 70%. Lin M; Guo C; Li J; Zhou D; Liu K; Zhang X; Xu T; Zhang H; Wang L; Yang B ACS Appl Mater Interfaces; 2014 Apr; 6(8):5860-8. PubMed ID: 24660754 [TBL] [Abstract][Full Text] [Related]
39. Functionalized biocompatible WO3 nanoparticles for triggered and targeted in vitro and in vivo photothermal therapy. Sharker SM; Kim SM; Lee JE; Choi KH; Shin G; Lee S; Lee KD; Jeong JH; Lee H; Park SY J Control Release; 2015 Nov; 217():211-20. PubMed ID: 26381897 [TBL] [Abstract][Full Text] [Related]
40. Copper sulfide nanoparticles with phospholipid-PEG coating for in vivo near-infrared photothermal cancer therapy. Huang Y; Lai Y; Shi S; Hao S; Wei J; Chen X Chem Asian J; 2015 Feb; 10(2):370-6. PubMed ID: 25425287 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]