BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 25676680)

  • 1. Formation of various bicolor fluorescent micropatterns on a single polymer film based on concurrent photobleaching and photobase generation.
    Chae KH; Kim HS
    Macromol Rapid Commun; 2015 Mar; 36(6):558-65. PubMed ID: 25676680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Masked rhodamine dyes of five principal colors revealed by photolysis of a 2-diazo-1-indanone caging group: synthesis, photophysics, and light microscopy applications.
    Belov VN; Mitronova GY; Bossi ML; Boyarskiy VP; Hebisch E; Geisler C; Kolmakov K; Wurm CA; Willig KI; Hell SW
    Chemistry; 2014 Oct; 20(41):13162-73. PubMed ID: 25196166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence "turn-on" patterning with polymers having pendant triphenylmethane groups as fluorophore precursors.
    Kim J; Cho J; Lee J; Park K; Kim JM
    Macromol Rapid Commun; 2011 Jun; 32(12):870-5. PubMed ID: 21520480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular photobleaching kinetics of Rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy.
    Eggeling C; Volkmer A; Seidel CA
    Chemphyschem; 2005 May; 6(5):791-804. PubMed ID: 15884061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Creating bicolor patterns via selective photobleaching with a single dye species.
    Gao L; Lu N; Hao J; Hu W; Shi G; Wang Y; Chi L
    Langmuir; 2009 Apr; 25(6):3894-7. PubMed ID: 19708259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Collective fluorescence switching of counterion-assembled dyes in polymer nanoparticles.
    Reisch A; Didier P; Richert L; Oncul S; Arntz Y; Mély Y; Klymchenko AS
    Nat Commun; 2014 Jun; 5():4089. PubMed ID: 24909912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-Infrared Phosphorus-Substituted Rhodamine with Emission Wavelength above 700 nm for Bioimaging.
    Chai X; Cui X; Wang B; Yang F; Cai Y; Wu Q; Wang T
    Chemistry; 2015 Nov; 21(47):16754-8. PubMed ID: 26420515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of single dye molecules observed by confocal imaging and spectroscopy.
    Weber MA; Stracke F; Meixner AJ
    Cytometry; 1999 Jul; 36(3):217-23. PubMed ID: 10404971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spiropyrans as molecular optical switches.
    Seefeldt B; Kasper R; Beining M; Mattay J; Arden-Jacob J; Kemnitzer N; Drexhage KH; Heilemann M; Sauer M
    Photochem Photobiol Sci; 2010 Feb; 9(2):213-20. PubMed ID: 20126797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rhodamine-inspired far-red to near-infrared dyes and their application as fluorescence probes.
    Sun YQ; Liu J; Lv X; Liu Y; Zhao Y; Guo W
    Angew Chem Int Ed Engl; 2012 Jul; 51(31):7634-6. PubMed ID: 22674799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-photon thermal bleaching of single fluorescent molecules.
    Chirico G; Cannone F; Baldini G; Diaspro A
    Biophys J; 2003 Jan; 84(1):588-98. PubMed ID: 12524312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning fluorescent response of nanoscale film with polymer grafting.
    Chyasnavichyus M; Tsyalkovsky V; Zdyrko B; Luzinov I
    Macromol Rapid Commun; 2012 Feb; 33(3):237-41. PubMed ID: 22213257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocompatible photoresistant far-red emitting, fluorescent polymer probes, with near-infrared two-photon absorption, for living cell and zebrafish embryo imaging.
    Adjili S; Favier A; Fargier G; Thomas A; Massin J; Monier K; Favard C; Vanbelle C; Bruneau S; Peyriéras N; Andraud C; Muriaux D; Charreyre MT
    Biomaterials; 2015 Apr; 46():70-81. PubMed ID: 25678117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical properties of Rh 6G dye in liquid and solid polymer.
    Dwivedi Y; Rai SB; Thakur SN
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Mar; 69(3):789-93. PubMed ID: 17602863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient red-edge materials photosensitized by Rhodamine 640.
    Garcia-Moreno I; Costela A; Pintado-Sierra M; Martin V; Sastre R
    J Phys Chem B; 2009 Aug; 113(31):10611-8. PubMed ID: 19591505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strategies to improve photostabilities in ultrasensitive fluorescence spectroscopy.
    Widengren J; Chmyrov A; Eggeling C; Löfdahl PA; Seidel CA
    J Phys Chem A; 2007 Jan; 111(3):429-40. PubMed ID: 17228891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Digital imaging fluorescence microscopy: spatial heterogeneity of photobleaching rate constants in individual cells.
    Benson DM; Bryan J; Plant AL; Gotto AM; Smith LC
    J Cell Biol; 1985 Apr; 100(4):1309-23. PubMed ID: 3920227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photobleaching of arterial fluorescent compounds: characterization of elastin, collagen and cholesterol time-resolved spectra during prolonged ultraviolet irradiation.
    Marcu L; Grundfest WS; Maarek JM
    Photochem Photobiol; 1999 Jun; 69(6):713-21. PubMed ID: 10378012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of NIR fluorescent dyes based on Si-rhodamine for in vivo imaging.
    Koide Y; Urano Y; Hanaoka K; Piao W; Kusakabe M; Saito N; Terai T; Okabe T; Nagano T
    J Am Chem Soc; 2012 Mar; 134(11):5029-31. PubMed ID: 22390359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication and characterization of stable ultrathin film micropatterns containing DNA and photosensitive polymer diazoresin.
    Yu B; Cong HL; Liu HW; Lu CH; Wei F; Cao WX
    Anal Bioanal Chem; 2006 Jan; 384(2):385-90. PubMed ID: 16362289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.