BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 25676894)

  • 1. Segmentation and tracking of stem cells in time lapse microscopy to quantify dynamic behavioral changes during spheroid formation.
    Jiang CF; Hsu SH; Tsai KP; Tsai MH
    Cytometry A; 2015 Jun; 87(6):491-502. PubMed ID: 25676894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spheroid formation of mesenchymal stem cells on chitosan and chitosan-hyaluronan membranes.
    Huang GS; Dai LG; Yen BL; Hsu SH
    Biomaterials; 2011 Oct; 32(29):6929-45. PubMed ID: 21762982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced chondrogenic differentiation potential of human gingival fibroblasts by spheroid formation on chitosan membranes.
    Hsu SH; Huang GS; Lin SY; Feng F; Ho TT; Liao YC
    Tissue Eng Part A; 2012 Jan; 18(1-2):67-79. PubMed ID: 21770867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The calcium-dependent regulation of spheroid formation and cardiomyogenic differentiation for MSCs on chitosan membranes.
    Yeh HY; Liu BH; Hsu SH
    Biomaterials; 2012 Dec; 33(35):8943-54. PubMed ID: 22985995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of spheroid formation of adipose-derived stem cells in a microgravity bioreactor on stemness properties and therapeutic potential.
    Zhang S; Liu P; Chen L; Wang Y; Wang Z; Zhang B
    Biomaterials; 2015 Feb; 41():15-25. PubMed ID: 25522961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of spheroid formation of human adipose-derived stem cells on chitosan films on stemness and differentiation capabilities.
    Cheng NC; Wang S; Young TH
    Biomaterials; 2012 Feb; 33(6):1748-58. PubMed ID: 22153870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of three-dimensional spheroid culture on equine mesenchymal stem cell plasticity.
    Park MJ; Lee J; Byeon JS; Jeong DU; Gu NY; Cho IS; Cha SH
    Vet Res Commun; 2018 Sep; 42(3):171-181. PubMed ID: 29721754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic three-dimensional culture methods enhance mesenchymal stem cell properties and increase therapeutic potential.
    Frith JE; Thomson B; Genever PG
    Tissue Eng Part C Methods; 2010 Aug; 16(4):735-49. PubMed ID: 19811095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and characterization of directed, one-day-self-assembled millimeter-size spheroids of adipose-derived mesenchymal stem cells.
    Iwai R; Nemoto Y; Nakayama Y
    J Biomed Mater Res A; 2016 Jan; 104(1):305-12. PubMed ID: 26386244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional spheroids of adipose-derived mesenchymal stem cells are potent initiators of blood vessel formation in porous polyurethane scaffolds.
    Laschke MW; Schank TE; Scheuer C; Kleer S; Schuler S; Metzger W; Eglin D; Alini M; Menger MD
    Acta Biomater; 2013 Jun; 9(6):6876-84. PubMed ID: 23415749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional spheroid culture promotes the stemness maintenance of cranial stem cells by activating PI3K/AKT and suppressing NF-κB pathways.
    He D; Wang RX; Mao JP; Xiao B; Chen DF; Tian W
    Biochem Biophys Res Commun; 2017 Jul; 488(3):528-533. PubMed ID: 28522297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional spheroid culture of human umbilical cord mesenchymal stem cells promotes cell yield and stemness maintenance.
    Li Y; Guo G; Li L; Chen F; Bao J; Shi YJ; Bu H
    Cell Tissue Res; 2015 May; 360(2):297-307. PubMed ID: 25749992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scaffold-free three-dimensional culture systems for mass production of periosteum-derived progenitor cells.
    Cha HM; Kim SM; Choi YS; Kim DI
    J Biosci Bioeng; 2015 Aug; 120(2):218-22. PubMed ID: 25641580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of dimensionality on growth and differentiation of neural progenitors from different regions of fetal rat brain in vitro: 3-dimensional spheroid versus 2-dimensional monolayer culture.
    Lu H; Searle K; Liu Y; Parker T
    Cells Tissues Organs; 2012; 196(1):48-55. PubMed ID: 22301365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate-dependent Wnt signaling in MSC differentiation within biomaterial-derived 3D spheroids.
    Hsu SH; Huang GS
    Biomaterials; 2013 Jul; 34(20):4725-38. PubMed ID: 23562051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative Bioimage Analysis of Passaging Effect on the Migratory Behavior of Human Mesenchymal Stem Cells During Spheroid Formation.
    Jiang CF; Hsu SH; Sun YM; Tsai MH
    Cytometry A; 2020 Apr; 97(4):394-406. PubMed ID: 32112613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporation of gelatin microparticles on the formation of adipose-derived stem cell spheroids.
    Kim Y; Baipaywad P; Jeong Y; Park H
    Int J Biol Macromol; 2018 Apr; 110():472-478. PubMed ID: 29369781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembled adult adipose-derived stem cell spheroids combined with biomaterials promote wound healing in a rat skin repair model.
    Hsu SH; Hsieh PS
    Wound Repair Regen; 2015; 23(1):57-64. PubMed ID: 25421559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiologically Low Oxygen Enhances Biomolecule Production and Stemness of Mesenchymal Stem Cell Spheroids.
    Shearier E; Xing Q; Qian Z; Zhao F
    Tissue Eng Part C Methods; 2016 Apr; 22(4):360-9. PubMed ID: 26830500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro characterization of scaffold-free three-dimensional mesenchymal stem cell aggregates.
    Rettinger CL; Fourcaudot AB; Hong SJ; Mustoe TA; Hale RG; Leung KP
    Cell Tissue Res; 2014 Nov; 358(2):395-405. PubMed ID: 25012521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.