BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

595 related articles for article (PubMed ID: 25677180)

  • 21. Genome-wide control of RNA polymerase II activity by cohesin.
    Schaaf CA; Kwak H; Koenig A; Misulovin Z; Gohara DW; Watson A; Zhou Y; Lis JT; Dorsett D
    PLoS Genet; 2013 Mar; 9(3):e1003382. PubMed ID: 23555293
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The long-range interaction landscape of gene promoters.
    Sanyal A; Lajoie BR; Jain G; Dekker J
    Nature; 2012 Sep; 489(7414):109-13. PubMed ID: 22955621
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cohesin is positioned in mammalian genomes by transcription, CTCF and Wapl.
    Busslinger GA; Stocsits RR; van der Lelij P; Axelsson E; Tedeschi A; Galjart N; Peters JM
    Nature; 2017 Apr; 544(7651):503-507. PubMed ID: 28424523
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Many Roles of Cohesin in Drosophila Gene Transcription.
    Dorsett D
    Trends Genet; 2019 Jul; 35(7):542-551. PubMed ID: 31130395
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Epigenetic deregulation of the LMP1/LMP2 locus of Epstein-Barr virus by mutation of a single CTCF-cohesin binding site.
    Chen HS; Martin KA; Lu F; Lupey LN; Mueller JM; Lieberman PM; Tempera I
    J Virol; 2014 Feb; 88(3):1703-13. PubMed ID: 24257606
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Architectural roles of multiple chromatin insulators at the human apolipoprotein gene cluster.
    Mishiro T; Ishihara K; Hino S; Tsutsumi S; Aburatani H; Shirahige K; Kinoshita Y; Nakao M
    EMBO J; 2009 May; 28(9):1234-45. PubMed ID: 19322193
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The genomic landscape of cohesin-associated chromatin interactions.
    DeMare LE; Leng J; Cotney J; Reilly SK; Yin J; Sarro R; Noonan JP
    Genome Res; 2013 Aug; 23(8):1224-34. PubMed ID: 23704192
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Mediator complex regulates enhancer-promoter interactions.
    Ramasamy S; Aljahani A; Karpinska MA; Cao TBN; Velychko T; Cruz JN; Lidschreiber M; Oudelaar AM
    Nat Struct Mol Biol; 2023 Jul; 30(7):991-1000. PubMed ID: 37430065
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cohesin-Dependent and -Independent Mechanisms Mediate Chromosomal Contacts between Promoters and Enhancers.
    Thiecke MJ; Wutz G; Muhar M; Tang W; Bevan S; Malysheva V; Stocsits R; Neumann T; Zuber J; Fraser P; Schoenfelder S; Peters JM; Spivakov M
    Cell Rep; 2020 Jul; 32(3):107929. PubMed ID: 32698000
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cohesin is required for higher-order chromatin conformation at the imprinted IGF2-H19 locus.
    Nativio R; Wendt KS; Ito Y; Huddleston JE; Uribe-Lewis S; Woodfine K; Krueger C; Reik W; Peters JM; Murrell A
    PLoS Genet; 2009 Nov; 5(11):e1000739. PubMed ID: 19956766
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genome-wide studies of CCCTC-binding factor (CTCF) and cohesin provide insight into chromatin structure and regulation.
    Lee BK; Iyer VR
    J Biol Chem; 2012 Sep; 287(37):30906-13. PubMed ID: 22952237
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A CTCF-independent role for cohesin in tissue-specific transcription.
    Schmidt D; Schwalie PC; Ross-Innes CS; Hurtado A; Brown GD; Carroll JS; Flicek P; Odom DT
    Genome Res; 2010 May; 20(5):578-88. PubMed ID: 20219941
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three-dimensional genome architectural CCCTC-binding factor makes choice in duplicated enhancers at Pcdhα locus.
    Wu Y; Jia Z; Ge X; Wu Q
    Sci China Life Sci; 2020 Jun; 63(6):835-844. PubMed ID: 32249388
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mediator and cohesin connect gene expression and chromatin architecture.
    Kagey MH; Newman JJ; Bilodeau S; Zhan Y; Orlando DA; van Berkum NL; Ebmeier CC; Goossens J; Rahl PB; Levine SS; Taatjes DJ; Dekker J; Young RA
    Nature; 2010 Sep; 467(7314):430-5. PubMed ID: 20720539
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Many facades of CTCF unified by its coding for three-dimensional genome architecture.
    Wu Q; Liu P; Wang L
    J Genet Genomics; 2020 Aug; 47(8):407-424. PubMed ID: 33187878
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of sub-kilobase chromatin topology reveals nano-scale regulatory interactions with variable dependence on cohesin and CTCF.
    Aljahani A; Hua P; Karpinska MA; Quililan K; Davies JOJ; Oudelaar AM
    Nat Commun; 2022 Apr; 13(1):2139. PubMed ID: 35440598
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cohesin-mediated interactions organize chromosomal domain architecture.
    Sofueva S; Yaffe E; Chan WC; Georgopoulou D; Vietri Rudan M; Mira-Bontenbal H; Pollard SM; Schroth GP; Tanay A; Hadjur S
    EMBO J; 2013 Dec; 32(24):3119-29. PubMed ID: 24185899
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A WIZ/Cohesin/CTCF Complex Anchors DNA Loops to Define Gene Expression and Cell Identity.
    Justice M; Carico ZM; Stefan HC; Dowen JM
    Cell Rep; 2020 Apr; 31(2):107503. PubMed ID: 32294452
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CTCF and Cohesin in Genome Folding and Transcriptional Gene Regulation.
    Merkenschlager M; Nora EP
    Annu Rev Genomics Hum Genet; 2016 Aug; 17():17-43. PubMed ID: 27089971
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A conserved insulator that recruits CTCF and cohesin exists between the closely related but divergently regulated interleukin-3 and granulocyte-macrophage colony-stimulating factor genes.
    Bowers SR; Mirabella F; Calero-Nieto FJ; Valeaux S; Hadjur S; Baxter EW; Merkenschlager M; Cockerill PN
    Mol Cell Biol; 2009 Apr; 29(7):1682-93. PubMed ID: 19158269
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.