BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

595 related articles for article (PubMed ID: 25677180)

  • 41. Cohesin and CTCF differentially regulate spatiotemporal runx1 expression during zebrafish development.
    Marsman J; O'Neill AC; Kao BR; Rhodes JM; Meier M; Antony J; Mönnich M; Horsfield JA
    Biochim Biophys Acta; 2014 Jan; 1839(1):50-61. PubMed ID: 24321385
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Defining genome architecture at base-pair resolution.
    Hua P; Badat M; Hanssen LLP; Hentges LD; Crump N; Downes DJ; Jeziorska DM; Oudelaar AM; Schwessinger R; Taylor S; Milne TA; Hughes JR; Higgs DR; Davies JOJ
    Nature; 2021 Jul; 595(7865):125-129. PubMed ID: 34108683
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A cohesin cancer mutation reveals a role for the hinge domain in genome organization and gene expression.
    Carico ZM; Stefan HC; Justice M; Yimit A; Dowen JM
    PLoS Genet; 2021 Mar; 17(3):e1009435. PubMed ID: 33760811
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tandem CTCF sites function as insulators to balance spatial chromatin contacts and topological enhancer-promoter selection.
    Jia Z; Li J; Ge X; Wu Y; Guo Y; Wu Q
    Genome Biol; 2020 Mar; 21(1):75. PubMed ID: 32293525
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells.
    Zuin J; Dixon JR; van der Reijden MI; Ye Z; Kolovos P; Brouwer RW; van de Corput MP; van de Werken HJ; Knoch TA; van IJcken WF; Grosveld FG; Ren B; Wendt KS
    Proc Natl Acad Sci U S A; 2014 Jan; 111(3):996-1001. PubMed ID: 24335803
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Extensive variation in chromatin states across humans.
    Kasowski M; Kyriazopoulou-Panagiotopoulou S; Grubert F; Zaugg JB; Kundaje A; Liu Y; Boyle AP; Zhang QC; Zakharia F; Spacek DV; Li J; Xie D; Olarerin-George A; Steinmetz LM; Hogenesch JB; Kellis M; Batzoglou S; Snyder M
    Science; 2013 Nov; 342(6159):750-2. PubMed ID: 24136358
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Integrative characterization of G-Quadruplexes in the three-dimensional chromatin structure.
    Hou Y; Li F; Zhang R; Li S; Liu H; Qin ZS; Sun X
    Epigenetics; 2019 Sep; 14(9):894-911. PubMed ID: 31177910
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Variable Extent of Lineage-Specificity and Developmental Stage-Specificity of Cohesin and CCCTC-Binding Factor Binding Within the Immunoglobulin and T Cell Receptor Loci.
    Loguercio S; Barajas-Mora EM; Shih HY; Krangel MS; Feeney AJ
    Front Immunol; 2018; 9():425. PubMed ID: 29593713
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Regulation of the Drosophila Enhancer of split and invected-engrailed gene complexes by sister chromatid cohesion proteins.
    Schaaf CA; Misulovin Z; Sahota G; Siddiqui AM; Schwartz YB; Kahn TG; Pirrotta V; Gause M; Dorsett D
    PLoS One; 2009 Jul; 4(7):e6202. PubMed ID: 19587787
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The specific contributions of cohesin-SA1 to cohesion and gene expression: implications for cancer and development.
    Cuadrado A; Remeseiro S; Gómez-López G; Pisano DG; Losada A
    Cell Cycle; 2012 Jun; 11(12):2233-8. PubMed ID: 22617390
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The Myc-associated zinc finger protein (MAZ) works together with CTCF to control cohesin positioning and genome organization.
    Xiao T; Li X; Felsenfeld G
    Proc Natl Acad Sci U S A; 2021 Feb; 118(7):. PubMed ID: 33558242
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Identifying clusters of
    Madani Tonekaboni SA; Mazrooei P; Kofia V; Haibe-Kains B; Lupien M
    Genome Res; 2019 Oct; 29(10):1733-1743. PubMed ID: 31533978
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Distinct roles of cohesin-SA1 and cohesin-SA2 in 3D chromosome organization.
    Kojic A; Cuadrado A; De Koninck M; Giménez-Llorente D; Rodríguez-Corsino M; Gómez-López G; Le Dily F; Marti-Renom MA; Losada A
    Nat Struct Mol Biol; 2018 Jun; 25(6):496-504. PubMed ID: 29867216
    [TBL] [Abstract][Full Text] [Related]  

  • 54. CTCF: the protein, the binding partners, the binding sites and their chromatin loops.
    Holwerda SJ; de Laat W
    Philos Trans R Soc Lond B Biol Sci; 2013; 368(1620):20120369. PubMed ID: 23650640
    [TBL] [Abstract][Full Text] [Related]  

  • 55. How cohesin and CTCF cooperate in regulating gene expression.
    Wendt KS; Peters JM
    Chromosome Res; 2009; 17(2):201-14. PubMed ID: 19308701
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mediation of CTCF transcriptional insulation by DEAD-box RNA-binding protein p68 and steroid receptor RNA activator SRA.
    Yao H; Brick K; Evrard Y; Xiao T; Camerini-Otero RD; Felsenfeld G
    Genes Dev; 2010 Nov; 24(22):2543-55. PubMed ID: 20966046
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Architectural protein subclasses shape 3D organization of genomes during lineage commitment.
    Phillips-Cremins JE; Sauria ME; Sanyal A; Gerasimova TI; Lajoie BR; Bell JS; Ong CT; Hookway TA; Guo C; Sun Y; Bland MJ; Wagstaff W; Dalton S; McDevitt TC; Sen R; Dekker J; Taylor J; Corces VG
    Cell; 2013 Jun; 153(6):1281-95. PubMed ID: 23706625
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Brca2, Pds5 and Wapl differentially control cohesin chromosome association and function.
    Misulovin Z; Pherson M; Gause M; Dorsett D
    PLoS Genet; 2018 Feb; 14(2):e1007225. PubMed ID: 29447171
    [TBL] [Abstract][Full Text] [Related]  

  • 59. LDB1-mediated enhancer looping can be established independent of mediator and cohesin.
    Krivega I; Dean A
    Nucleic Acids Res; 2017 Aug; 45(14):8255-8268. PubMed ID: 28520978
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Genome-wide map of regulatory interactions in the human genome.
    Heidari N; Phanstiel DH; He C; Grubert F; Jahanbani F; Kasowski M; Zhang MQ; Snyder MP
    Genome Res; 2014 Dec; 24(12):1905-17. PubMed ID: 25228660
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.