BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 25677294)

  • 1. Transient corneal edema circumscribed to the LASIK flap after uneventful cataract surgery.
    Gros-Otero J; Garcia-Gonzalez M; Teus MA
    Can J Ophthalmol; 2015 Feb; 50(1):e17-9. PubMed ID: 25677294
    [No Abstract]   [Full Text] [Related]  

  • 2. AS-OCT as a tool for flap thickness measurement after femtosecond-assisted LASIK.
    Kucumen RB; Yenerel NM; Gorgun E; Oral D; Altunsoy M; Utine CA; Ciftci F
    Ophthalmic Surg Lasers Imaging; 2011; 42(1):31-6. PubMed ID: 21117582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Delayed-onset interface fluid syndrome after laser in situ keratomileusis secondary to combined cataract and vitreoretinal surgery.
    Han SB; Woo SJ; Hyon JY
    J Cataract Refract Surg; 2012 Mar; 38(3):548-50. PubMed ID: 22200509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser in situ keratomileusis flap measurements: Comparison between observers and between spectral-domain and time-domain anterior segment optical coherence tomography.
    Hall RC; Mohamed FK; Htoon HM; Tan DT; Mehta JS
    J Cataract Refract Surg; 2011 Mar; 37(3):544-51. PubMed ID: 21333877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of haze formation after thin-flap microkeratome LASIK for myopia.
    Ibrahim AI; Sharif KW
    J Refract Surg; 2012 Nov; 28(11):749-50. PubMed ID: 23347366
    [No Abstract]   [Full Text] [Related]  

  • 6. Interlamellar flap edema due to steroid-induced ocular hypertension after laser in situ keratomileusis.
    Miyai T; Yonemura T; Nejima R; Otani S; Miyata K; Amano S
    Jpn J Ophthalmol; 2007; 51(3):228-30. PubMed ID: 17554487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predictability of corneal flap thickness in laser in situ keratomileusis using a 200 kHz femtosecond laser.
    Cummings AB; Cummings BK; Kelly GE
    J Cataract Refract Surg; 2013 Mar; 39(3):378-85. PubMed ID: 23352500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flap thickness using the moria one use-plus and moria m2 microkeratomes.
    Kaiserman I; Sela T; Domniz Y; Visokovsky M; Suhodrev Y; Munzer G; Chen YG
    J Refract Surg; 2011 Feb; 27(2):89; author reply 90. PubMed ID: 21323235
    [No Abstract]   [Full Text] [Related]  

  • 9. Thin-flap laser in situ keratomileusis with femtosecond-laser technology.
    Kymionis GD; Kontadakis GA; Grentzelos MA; Panagopoulou SI; Stojanovic N; Kankariya VP; Henderson BA; Pallikaris IG
    J Cataract Refract Surg; 2013 Sep; 39(9):1366-71. PubMed ID: 23820304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Safety limits of online optical coherence pachymetry.
    Pfaeffl WA
    J Cataract Refract Surg; 2009 Apr; 35(4):610-1; author reply 611-2. PubMed ID: 19304065
    [No Abstract]   [Full Text] [Related]  

  • 11. Comparison of LASEK and LASIK with thin and ultrathin flaps after excimer laser ablation with the SCHWIND Aspheric ablation profile.
    Arbelaez MC; Vidal C; Arba Mosquera S
    J Refract Surg; 2011 Jan; 27(1):38-48. PubMed ID: 20438023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immediate evaluation of the flaps created by femtosecond laser using anterior segment optical coherence tomography.
    Kucumen RB; Dinc UA; Yenerel NM; Gorgun E; Alimgil ML
    Ophthalmic Surg Lasers Imaging; 2009; 40(3):251-4. PubMed ID: 19485288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prospective contralateral eye study to compare 80- and 120-μm flap LASIK using the VisuMax femtosecond laser.
    Lim DH; Keum JE; Ju WK; Lee JH; Chung TY; Chung ES
    J Refract Surg; 2013 Jul; 29(7):462-8. PubMed ID: 23820228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corneal architecture of femtosecond laser and microkeratome flaps imaged by anterior segment optical coherence tomography.
    von Jagow B; Kohnen T
    J Cataract Refract Surg; 2009 Jan; 35(1):35-41. PubMed ID: 19101422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. OCT analysis of flap thickness.
    Peters NT
    J Refract Surg; 2008 Feb; 24(2):117; author reply 117-9. PubMed ID: 18297934
    [No Abstract]   [Full Text] [Related]  

  • 16. A comparison of LASIK flap thickness and morphology between the Intralase 60- and 150-kHz femtosecond lasers.
    Yu CQ; Manche EE
    J Refract Surg; 2014 Dec; 30(12):827-30. PubMed ID: 25437481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uveitis-associated flap edema and lamellar interface fluid collection after LASIK.
    Bacsal K; Chee SP
    Am J Ophthalmol; 2006 Jan; 141(1):232. PubMed ID: 16387027
    [No Abstract]   [Full Text] [Related]  

  • 18. Imaging interface fluid after laser in situ keratomileusis with corneal optical coherence tomography.
    Wirbelauer C; Pham DT
    J Cataract Refract Surg; 2005 Apr; 31(4):853-6. PubMed ID: 15899468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accuracy and reproducibility of artemis central flap thickness and visual outcomes of LASIK with the Carl Zeiss Meditec VisuMax femtosecond laser and MEL 80 excimer laser platforms.
    Reinstein DZ; Archer TJ; Gobbe M; Johnson N
    J Refract Surg; 2010 Feb; 26(2):107-19. PubMed ID: 20163075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relative contribution of flap thickness and ablation depth to the percentage of tissue altered in ectasia after laser in situ keratomileusis.
    Santhiago MR; Smajda D; Wilson SE; Randleman JB
    J Cataract Refract Surg; 2015 Nov; 41(11):2493-500. PubMed ID: 26452432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.