These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 25677294)

  • 41. Apodized diffractive intraocular lens implantation after laser in situ keratomileusis with or without subsequent excimer laser enhancement.
    Muftuoglu O; Dao L; Mootha VV; Verity SM; Bowman RW; Cavanagh HD; McCulley JP
    J Cataract Refract Surg; 2010 Nov; 36(11):1815-21. PubMed ID: 21029886
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In vivo structural characteristics of the femtosecond LASIK-induced opaque bubble layers with ultrahigh-resolution SD-OCT.
    Hurmeric V; Yoo SH; Fishler J; Chang VS; Wang J; Culbertson WW
    Ophthalmic Surg Lasers Imaging; 2010; 41 Suppl():S109-13. PubMed ID: 21117595
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Monitoring corneal structures with slitlamp-adapted optical coherence tomography in laser in situ keratomileusis.
    Wirbelauer C; Pham DT
    J Cataract Refract Surg; 2004 Sep; 30(9):1851-60. PubMed ID: 15342046
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Interface fluid syndrome in routine cataract surgery 10 years after laser in situ keratomileusis.
    Ortega-Usobiaga J; Martin-Reyes C; Llovet-Osuna F; Damas-Mateache B; Baviera-Sabater J
    Cornea; 2012 Jun; 31(6):706-7. PubMed ID: 22382593
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Long-term recurrent flap complication after previous laser in situ keratomileusis: March consultation #1.
    Nuijts RMMA; Saelens IEY
    J Cataract Refract Surg; 2018 Mar; 44(3):410-411. PubMed ID: 29703296
    [No Abstract]   [Full Text] [Related]  

  • 46. High-resolution optical coherence tomography visualization of LASIK flap displacement.
    Rosas Salaroli CH; Li Y; Huang D
    J Cataract Refract Surg; 2009 Sep; 35(9):1640-2. PubMed ID: 19683168
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparison of femtosecond laser and mechanical microkeratome for flap thickness accuracy.
    Lipstock K
    J Cataract Refract Surg; 2010 Feb; 36(2):363-4; author reply 364. PubMed ID: 20152639
    [No Abstract]   [Full Text] [Related]  

  • 48. Laser in situ keratomileusis flap complications using mechanical microkeratome versus femtosecond laser: retrospective comparison.
    Moshirfar M; Gardiner JP; Schliesser JA; Espandar L; Feiz V; Mifflin MD; Chang JC
    J Cataract Refract Surg; 2010 Nov; 36(11):1925-33. PubMed ID: 21029902
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Complications of femtosecond laser-assisted re-treatment for residual refractive errors after LASIK.
    Vaddavalli PK; Diakonis VF; Canto AP; Culbertson WW; Wang J; Kankariya VP; Yoo SH
    J Refract Surg; 2013 Aug; 29(8):577-80. PubMed ID: 23799795
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Noninflammatory flap edema after laser in situ keratomileusis associated with asymmetrical preoperative corneal pachymetry.
    Loh RS; Hardten DR
    J Cataract Refract Surg; 2005 May; 31(5):922-9. PubMed ID: 15975457
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparison of Epi-LASIK and off-flap Epi-LASIK for the treatment of low and moderate myopia.
    Kalyvianaki MI; Kymionis GD; Kounis GA; Panagopoulou SI; Grentzelos MA; Pallikaris IG
    Ophthalmology; 2008 Dec; 115(12):2174-80. PubMed ID: 19041475
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Uveitis-associated flap edema and lamellar interface fluid collection after LASIK.
    McLeod SD; Mather R; Hwang DG; Margolis TP
    Am J Ophthalmol; 2005 Jun; 139(6):1137-9. PubMed ID: 15953462
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Corneal lamellar flap retraction after LASIK following penetrating keratoplasty.
    Sharma N; Sinha R; Vajpayee RB
    Cornea; 2006 May; 25(4):496. PubMed ID: 16670496
    [No Abstract]   [Full Text] [Related]  

  • 54. Flap thickness in femtosecond laser.
    Juhasz E
    J Refract Surg; 2015 Feb; 31(2):140. PubMed ID: 25793238
    [No Abstract]   [Full Text] [Related]  

  • 55. Predictive factors of femtosecond laser flap thickness measured by online optical coherence pachymetry subtraction in sub-Bowman keratomileusis.
    Pfaeffl WA; Kunze M; Zenk U; Pfaeffl MB; Schuster T; Lohmann C
    J Cataract Refract Surg; 2008 Nov; 34(11):1872-80. PubMed ID: 19006732
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Persistent interface fluid syndrome.
    Hoffman RS; Fine IH; Packer M
    J Cataract Refract Surg; 2008 Aug; 34(8):1405-8. PubMed ID: 18655997
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Measurement of corneal curvature change after mechanical laser in situ keratomileusis flap creation and femtosecond laser flap creation.
    Ortiz D; Alió JL; Piñero D
    J Cataract Refract Surg; 2008 Feb; 34(2):238-42. PubMed ID: 18242446
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optical Zone Centration Accuracy Using Corneal Fixation-based SMILE Compared to Eye Tracker-based Femtosecond Laser-assisted LASIK for Myopia.
    Reinstein DZ; Gobbe M; Gobbe L; Archer TJ; Carp GI
    J Refract Surg; 2015 Sep; 31(9):586-92. PubMed ID: 26352563
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Modified double-K method for intraocular lens power calculation after excimer laser corneal refractive surgery.
    Saiki M; Negishi K; Kato N; Ogino R; Arai H; Toda I; Dogru M; Tsubota K
    J Cataract Refract Surg; 2013 Apr; 39(4):556-62. PubMed ID: 23415780
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Prospective, double-masked, randomized trial comparing lidocaine gel to tetracaine drops in femtosecond laser-assisted LASIK.
    Shah NV; Vaddavalli PK; Chow JH; Roman JS; Shi W; Yoo SH
    J Refract Surg; 2012 Oct; 28(10):671-2. PubMed ID: 23061994
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.