These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 25677338)
1. Stable and efficient loading of silver nanoparticles in spherical polyelectrolyte brushes and the antibacterial effects. Liu X; Xu Y; Wang X; Shao M; Xu J; Wang J; Li L; Zhang R; Guo X Colloids Surf B Biointerfaces; 2015 Mar; 127():148-54. PubMed ID: 25677338 [TBL] [Abstract][Full Text] [Related]
2. Synthesis of poly acrylic acid modified silver nanoparticles and their antimicrobial activities. Ni Z; Wang Z; Sun L; Li B; Zhao Y Mater Sci Eng C Mater Biol Appl; 2014 Aug; 41():249-54. PubMed ID: 24907758 [TBL] [Abstract][Full Text] [Related]
3. Controllable in situ synthesis of silver nanoparticles on multilayered film-coated silk fibers for antibacterial application. Meng M; He H; Xiao J; Zhao P; Xie J; Lu Z J Colloid Interface Sci; 2016 Jan; 461():369-375. PubMed ID: 26414419 [TBL] [Abstract][Full Text] [Related]
4. The potential use of a layer-by-layer strategy to develop LDPE antimicrobial films coated with silver nanoparticles for packaging applications. Azlin-Hasim S; Cruz-Romero MC; Cummins E; Kerry JP; Morris MA J Colloid Interface Sci; 2016 Jan; 461():239-248. PubMed ID: 26402783 [TBL] [Abstract][Full Text] [Related]
5. Capsules with silver nanoparticle enrichment subdomains and their antimicrobial properties. Wang A; Cui Y; Yang Y; Li J Chem Asian J; 2010 Aug; 5(8):1780-7. PubMed ID: 20583037 [TBL] [Abstract][Full Text] [Related]
6. Polyelectrolyte multilayer-assisted immobilization of zero-valent iron nanoparticles onto polymer nanofibers for potential environmental applications. Xiao S; Wu S; Shen M; Guo R; Huang Q; Wang S; Shi X ACS Appl Mater Interfaces; 2009 Dec; 1(12):2848-55. PubMed ID: 20356166 [TBL] [Abstract][Full Text] [Related]
7. A novel and green biomaterial based silver nanocomposite hydrogel: synthesis, characterization and antibacterial effect. Bardajee GR; Hooshyar Z; Rezanezhad H J Inorg Biochem; 2012 Dec; 117():367-73. PubMed ID: 22818024 [TBL] [Abstract][Full Text] [Related]
8. Antibacterial polyelectrolyte micelles for coating stainless steel. Falentin-Daudré C; Faure E; Svaldo-Lanero T; Farina F; Jérôme C; Van De Weerdt C; Martial J; Duwez AS; Detrembleur C Langmuir; 2012 May; 28(18):7233-41. PubMed ID: 22506542 [TBL] [Abstract][Full Text] [Related]
9. Antibacterial cellulose paper made with silver-coated gold nanoparticles. Tsai TT; Huang TH; Chang CJ; Yi-Ju Ho N; Tseng YT; Chen CF Sci Rep; 2017 Jun; 7(1):3155. PubMed ID: 28600506 [TBL] [Abstract][Full Text] [Related]
10. Electron storage mediated dark antibacterial action of bound silver nanoparticles: smaller is not always better. Cao H; Qiao Y; Liu X; Lu T; Cui T; Meng F; Chu PK Acta Biomater; 2013 Feb; 9(2):5100-10. PubMed ID: 23085265 [TBL] [Abstract][Full Text] [Related]
11. First successful design of semi-IPN hydrogel-silver nanocomposites: a facile approach for antibacterial application. Murthy PS; Murali Mohan Y; Varaprasad K; Sreedhar B; Mohana Raju K J Colloid Interface Sci; 2008 Feb; 318(2):217-24. PubMed ID: 18005980 [TBL] [Abstract][Full Text] [Related]
12. Preparation of graphene oxide-silver nanoparticle nanohybrids with highly antibacterial capability. Zhu Z; Su M; Ma L; Ma L; Liu D; Wang Z Talanta; 2013 Dec; 117():449-55. PubMed ID: 24209367 [TBL] [Abstract][Full Text] [Related]
13. The deposition of iron and silver nanoparticles in graphene-polyelectrolyte brushes. Fang M; Chen Z; Wang S; Lu H Nanotechnology; 2012 Mar; 23(8):085704. PubMed ID: 22293553 [TBL] [Abstract][Full Text] [Related]
15. Plant-mediated biosynthesis of silver nanoparticles using Prosopis farcta extract and its antibacterial properties. Miri A; Sarani M; Rezazade Bazaz M; Darroudi M Spectrochim Acta A Mol Biomol Spectrosc; 2015 Apr; 141():287-91. PubMed ID: 25682217 [TBL] [Abstract][Full Text] [Related]
16. Nanostructured multilayer polyelectrolyte films with silver nanoparticles as antibacterial coatings. Kruk T; Szczepanowicz K; Kręgiel D; Szyk-Warszyńska L; Warszyński P Colloids Surf B Biointerfaces; 2016 Jan; 137():158-66. PubMed ID: 26193773 [TBL] [Abstract][Full Text] [Related]
17. Antibacterial efficacy of silver nanoparticles of different sizes, surface conditions and synthesis methods. Samberg ME; Orndorff PE; Monteiro-Riviere NA Nanotoxicology; 2011 Jun; 5(2):244-53. PubMed ID: 21034371 [TBL] [Abstract][Full Text] [Related]
18. Antibacterial properties of Ag nanoparticle loaded multilayers and formation of magnetically directed antibacterial microparticles. Lee D; Cohen RE; Rubner MF Langmuir; 2005 Oct; 21(21):9651-9. PubMed ID: 16207049 [TBL] [Abstract][Full Text] [Related]
19. Synthesis of novel cellulose- based antibacterial composites of Ag nanoparticles@ metal-organic frameworks@ carboxymethylated fibers. Duan C; Meng J; Wang X; Meng X; Sun X; Xu Y; Zhao W; Ni Y Carbohydr Polym; 2018 Aug; 193():82-88. PubMed ID: 29773400 [TBL] [Abstract][Full Text] [Related]
20. Characterization of antibacterial polyethersulfone membranes using the Respiration Activity Monitoring System (RAMOS). Kochan J; Scheidle M; van Erkel J; Bikel M; Büchs J; Wong JE; Melin T; Wessling M Water Res; 2012 Oct; 46(16):5401-9. PubMed ID: 22884245 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]