These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 25677338)
21. Recyclable and stable silver deposited magnetic nanoparticles with poly (vinyl pyrrolidone)-catechol coated iron oxide for antimicrobial activity. Mosaiab T; Jeong CJ; Shin GJ; Choi KH; Lee SK; Lee I; In I; Park SY Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3786-94. PubMed ID: 23910278 [TBL] [Abstract][Full Text] [Related]
22. Surface modification of titanium substrates with silver nanoparticles embedded sulfhydrylated chitosan/gelatin polyelectrolyte multilayer films for antibacterial application. Li W; Xu D; Hu Y; Cai K; Lin Y J Mater Sci Mater Med; 2014 Jun; 25(6):1435-48. PubMed ID: 24664672 [TBL] [Abstract][Full Text] [Related]
23. Synthesis of phenolic precursor-based porous carbon beads in situ dispersed with copper-silver bimetal nanoparticles for antibacterial applications. Khare P; Sharma A; Verma N J Colloid Interface Sci; 2014 Mar; 418():216-24. PubMed ID: 24461838 [TBL] [Abstract][Full Text] [Related]
24. Rice husk based porous carbon loaded with silver nanoparticles by a simple and cost-effective approach and their antibacterial activity. Cui J; Yang Y; Hu Y; Li F J Colloid Interface Sci; 2015 Oct; 455():117-24. PubMed ID: 26057944 [TBL] [Abstract][Full Text] [Related]
25. Covalently-layers of PVA and PAA and in situ formed Ag nanoparticles as versatile antimicrobial surfaces. Fragal VH; Cellet TS; Pereira GM; Fragal EH; Costa MA; Nakamura CV; Asefa T; Rubira AF; Silva R Int J Biol Macromol; 2016 Oct; 91():329-37. PubMed ID: 27196366 [TBL] [Abstract][Full Text] [Related]
26. Antibacterial surfaces by adsorptive binding of polyvinyl-sulphonate-stabilized silver nanoparticles. Vasilev K; Sah VR; Goreham RV; Ndi C; Short RD; Griesser HJ Nanotechnology; 2010 May; 21(21):215102. PubMed ID: 20431209 [TBL] [Abstract][Full Text] [Related]
27. Antibacterial and cytotoxic effect of biologically synthesized silver nanoparticles using aqueous root extract of Erythrina indica lam. Rathi Sre PR; Reka M; Poovazhagi R; Arul Kumar M; Murugesan K Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 135():1137-44. PubMed ID: 25189525 [TBL] [Abstract][Full Text] [Related]
29. Self-assembled chitosan/heparin multilayer film as a novel template for in situ synthesis of silver nanoparticles. Yuan W; Fu J; Su K; Ji J Colloids Surf B Biointerfaces; 2010 Apr; 76(2):549-55. PubMed ID: 20071156 [TBL] [Abstract][Full Text] [Related]
30. Antibacterial activity of poly(vinyl alcohol)-b-poly(acrylonitrile) based micelles loaded with silver nanoparticles. Bryaskova R; Pencheva D; Kyulavska M; Bozukova D; Debuigne A; Detrembleur C J Colloid Interface Sci; 2010 Apr; 344(2):424-8. PubMed ID: 20074742 [TBL] [Abstract][Full Text] [Related]
31. Immobilization of silver nanoparticles onto sulfonated polyethersulfone membranes as antibacterial materials. Cao X; Tang M; Liu F; Nie Y; Zhao C Colloids Surf B Biointerfaces; 2010 Dec; 81(2):555-62. PubMed ID: 20810256 [TBL] [Abstract][Full Text] [Related]
32. A versatile strategy to fabricate hydrogel-silver nanocomposites and investigation of their antimicrobial activity. Thomas V; Yallapu MM; Sreedhar B; Bajpai SK J Colloid Interface Sci; 2007 Nov; 315(1):389-95. PubMed ID: 17707388 [TBL] [Abstract][Full Text] [Related]
33. Cytotoxicity and antibacterial property of titanium alloy coated with silver nanoparticle-containing polyelectrolyte multilayer. Zhang X; Li Z; Yuan X; Cui Z; Bao H; Li X; Liu Y; Yang X Mater Sci Eng C Mater Biol Appl; 2013 Jul; 33(5):2816-20. PubMed ID: 23623101 [TBL] [Abstract][Full Text] [Related]
34. Development of silver nanoparticle loaded antibacterial polymer mesh using plasma polymerization process. Kumar V; Jolivalt C; Pulpytel J; Jafari R; Arefi-Khonsari F J Biomed Mater Res A; 2013 Apr; 101(4):1121-32. PubMed ID: 23015534 [TBL] [Abstract][Full Text] [Related]
35. Polyelectrolyte/silver nanocomposite multilayer films as multifunctional thin film platforms for remote activated protein and drug delivery. Anandhakumar S; Raichur AM Acta Biomater; 2013 Nov; 9(11):8864-74. PubMed ID: 23791673 [TBL] [Abstract][Full Text] [Related]
36. Structural and morphological investigations of β-cyclodextrin-coated silver nanoparticles. Andrade PF; de Faria AF; da Silva DS; Bonacin JA; Gonçalves Mdo C Colloids Surf B Biointerfaces; 2014 Jun; 118():289-97. PubMed ID: 24780436 [TBL] [Abstract][Full Text] [Related]
37. Polyelectrolyte and silver nanoparticle modification of microfiltration membranes to mitigate organic and bacterial fouling. Diagne F; Malaisamy R; Boddie V; Holbrook RD; Eribo B; Jones KL Environ Sci Technol; 2012 Apr; 46(7):4025-33. PubMed ID: 22329664 [TBL] [Abstract][Full Text] [Related]
38. Enhanced antibacterial activities of leonuri herba extracts containing silver nanoparticles. Im AR; Han L; Kim ER; Kim J; Kim YS; Park Y Phytother Res; 2012 Aug; 26(8):1249-55. PubMed ID: 22170803 [TBL] [Abstract][Full Text] [Related]
39. Ultrafine Silver Nanoparticles Embedded in Cyclodextrin Metal-Organic Frameworks with GRGDS Functionalization to Promote Antibacterial and Wound Healing Application. Shakya S; He Y; Ren X; Guo T; Maharjan A; Luo T; Wang T; Dhakhwa R; Regmi B; Li H; Gref R; Zhang J Small; 2019 Jul; 15(27):e1901065. PubMed ID: 31069948 [TBL] [Abstract][Full Text] [Related]
40. In situ formation of silver nanoparticles on thin-film composite reverse osmosis membranes for biofouling mitigation. Ben-Sasson M; Lu X; Bar-Zeev E; Zodrow KR; Nejati S; Qi G; Giannelis EP; Elimelech M Water Res; 2014 Oct; 62():260-70. PubMed ID: 24963888 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]