These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 25677559)

  • 1. A neuro-inspired model-based closed-loop neuroprosthesis for the substitution of a cerebellar learning function in anesthetized rats.
    Hogri R; Bamford SA; Taub AH; Magal A; Del Giudice P; Mintz M
    Sci Rep; 2015 Feb; 5():8451. PubMed ID: 25677559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time cerebellar neuroprosthetic system based on a spiking neural network model of motor learning.
    Xu T; Xiao N; Zhai X; Kwan Chan P; Tin C
    J Neural Eng; 2018 Feb; 15(1):016021. PubMed ID: 29115280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fuzzy neuronal model of motor control inspired by cerebellar pathways to online and gradually learn inverse biomechanical functions in the presence of delay.
    Salimi-Badr A; Ebadzadeh MM; Darlot C
    Biol Cybern; 2017 Dec; 111(5-6):421-438. PubMed ID: 28993878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The cerebellum modulates rodent cortical motor output after repetitive somatosensory stimulation.
    Oulad Ben Taib N; Manto M; Laute MA; Brotchi J
    Neurosurgery; 2005 Apr; 56(4):811-20; discussion 811-20. PubMed ID: 15792520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A VLSI field-programmable mixed-signal array to perform neural signal processing and neural modeling in a prosthetic system.
    Bamford SA; Hogri R; Giovannucci A; Taub AH; Herreros I; Verschure PF; Mintz M; Del Giudice P
    IEEE Trans Neural Syst Rehabil Eng; 2012 Jul; 20(4):455-67. PubMed ID: 22481832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic Redistribution of Plasticity in a Cerebellar Spiking Neural Network Reproducing an Associative Learning Task Perturbed by TMS.
    Antonietti A; Monaco J; D'Angelo E; Pedrocchi A; Casellato C
    Int J Neural Syst; 2018 Nov; 28(9):1850020. PubMed ID: 29914314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amygdala Modulation of Cerebellar Learning.
    Farley SJ; Radley JJ; Freeman JH
    J Neurosci; 2016 Feb; 36(7):2190-201. PubMed ID: 26888929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Habit learning dissociation in rats with lesions to the vermis and the interpositus of the cerebellum.
    Callu D; Puget S; Faure A; Guegan M; El Massioui N
    Neurobiol Dis; 2007 Aug; 27(2):228-37. PubMed ID: 17560113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution of neural plasticity in cerebellum-dependent motor learning.
    Longley M; Yeo CH
    Prog Brain Res; 2014; 210():79-101. PubMed ID: 24916290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ontogeny of associative cerebellar learning.
    Freeman JH
    Int Rev Neurobiol; 2014; 117():53-72. PubMed ID: 25172629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Cerebellar Neuroprosthetic System: Computational Architecture and in vivo Test.
    Herreros I; Giovannucci A; Taub AH; Hogri R; Magal A; Bamford S; Prueckl R; Verschure PF
    Front Bioeng Biotechnol; 2014; 2():14. PubMed ID: 25152887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amygdala conditioning modulates sensory input to the cerebellum.
    Taub AH; Mintz M
    Neurobiol Learn Mem; 2010 Nov; 94(4):521-9. PubMed ID: 20832497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prolonging the postcomplex spike pause speeds eyeblink conditioning.
    Maiz J; Karakossian MH; Pakaprot N; Robleto K; Thompson RF; Otis TS
    Proc Natl Acad Sci U S A; 2012 Oct; 109(41):16726-30. PubMed ID: 22988089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neck muscle fatigue impacts plasticity and sensorimotor integration in cerebellum and motor cortex in response to novel motor skill acquisition.
    Zabihhosseinian M; Yielder P; Berkers V; Ambalavanar U; Holmes M; Murphy B
    J Neurophysiol; 2020 Sep; 124(3):844-855. PubMed ID: 32755363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Input-output nonlinearities and time delays increase tracking errors in hand grasp neuroprostheses.
    Adamczyk MM; Crago PE
    IEEE Trans Rehabil Eng; 1996 Dec; 4(4):271-9. PubMed ID: 8973953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Multiple-Plasticity Spiking Neural Network Embedded in a Closed-Loop Control System to Model Cerebellar Pathologies.
    Geminiani A; Casellato C; Antonietti A; D'Angelo E; Pedrocchi A
    Int J Neural Syst; 2018 Jun; 28(5):1750017. PubMed ID: 28264639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The cerebellum and postural sensorimotor learning in mice and rats.
    Caston J; Lalonde R; Delhaye-Bouchaud N; Mariani J
    Behav Brain Res; 1998 Sep; 95(1):17-22. PubMed ID: 9754872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The cerebellum in maintenance of a motor skill: a hierarchy of brain and spinal cord plasticity underlies H-reflex conditioning.
    Wolpaw JR; Chen XY
    Learn Mem; 2006; 13(2):208-15. PubMed ID: 16585796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A proof-of-principle simulation for closed-loop control based on preexisting experimental thalamic DBS-enhanced instrumental learning.
    Wang CF; Yang SH; Lin SH; Chen PC; Lo YC; Pan HC; Lai HY; Liao LD; Lin HC; Chen HY; Huang WC; Huang WJ; Chen YY
    Brain Stimul; 2017; 10(3):672-683. PubMed ID: 28298263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive robotic control driven by a versatile spiking cerebellar network.
    Casellato C; Antonietti A; Garrido JA; Carrillo RR; Luque NR; Ros E; Pedrocchi A; D'Angelo E
    PLoS One; 2014; 9(11):e112265. PubMed ID: 25390365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.