These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 25677731)

  • 1. Esterases as stereoselective biocatalysts.
    Romano D; Bonomi F; de Mattos MC; de Sousa Fonseca T; de Oliveira Mda C; Molinari F
    Biotechnol Adv; 2015; 33(5):547-65. PubMed ID: 25677731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Engineering the enantioselectivity of biocatalysts].
    Zhu D; Wu Q
    Sheng Wu Gong Cheng Xue Bao; 2009 Dec; 25(12):1770-8. PubMed ID: 20352950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly enantioselective kinetic resolution of two tertiary alcohols using mutants of an esterase from Bacillus subtilis.
    Heinze B; Kourist R; Fransson L; Hult K; Bornscheuer UT
    Protein Eng Des Sel; 2007 Mar; 20(3):125-31. PubMed ID: 17309898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enantioselective kinetic resolution of phenylalkyl carboxylic acids using metagenome-derived esterases.
    Fernández-Álvaro E; Kourist R; Winter J; Böttcher D; Liebeton K; Naumer C; Eck J; Leggewie C; Jaeger KE; Streit W; Bornscheuer UT
    Microb Biotechnol; 2010 Jan; 3(1):59-64. PubMed ID: 21255306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased enantioselectivity by engineering bottleneck mutants in an esterase from Pseudomonas fluorescens.
    Schliessmann A; Hidalgo A; Berenguer J; Bornscheuer UT
    Chembiochem; 2009 Dec; 10(18):2920-3. PubMed ID: 19847842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strategic selection of hyperthermophilic esterases for resolution of 2-arylpropionic esters.
    Sehgal AC; Kelly RM
    Biotechnol Prog; 2003; 19(5):1410-6. PubMed ID: 14524700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of chiral alpha-cyanoesters as general fluorescent substrates for screening enantioselective esterases.
    Huang H; Nishi K; Gee SJ; Hammock BD
    J Agric Food Chem; 2006 Feb; 54(3):694-9. PubMed ID: 16448170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directed evolution of stereoselective enzymes based on genetic selection as opposed to screening systems.
    Acevedo-Rocha CG; Agudo R; Reetz MT
    J Biotechnol; 2014 Dec; 191():3-10. PubMed ID: 24786824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein engineering for development of new hydrolytic biocatalysts.
    Widersten M
    Curr Opin Chem Biol; 2014 Aug; 21():42-7. PubMed ID: 24769269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feruloyl Esterases Protein Engineering to Enhance Their Performance as Biocatalysts: A Review.
    Vega-Rodríguez MAD; Rodríguez-González JA; Armendáriz-Ruiz MA; Asaff-Torres A; Sotelo-Mundo RR; Velasco-Lozano S; Mateos-Díaz JC
    Chembiochem; 2022 Nov; 23(22):e202200354. PubMed ID: 35781918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The N-Acetyl Amino Acid Racemases (NAAARs); Native and evolved biocatalysts applied to the synthesis of canonical and non-canonical amino acids.
    De Cesare S; Campopiano DJ
    Curr Opin Biotechnol; 2021 Jun; 69():212-220. PubMed ID: 33556834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipases: Valuable catalysts for dynamic kinetic resolutions.
    de Miranda AS; Miranda LS; de Souza RO
    Biotechnol Adv; 2015; 33(5):372-93. PubMed ID: 25795055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laboratory evolution of stereoselective enzymes: a prolific source of catalysts for asymmetric reactions.
    Reetz MT
    Angew Chem Int Ed Engl; 2011 Jan; 50(1):138-74. PubMed ID: 20715024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pro-antibiotic substrates for the identification of enantioselective hydrolases.
    Hwang BY; Oh JM; Kim J; Kim BG
    Biotechnol Lett; 2006 Aug; 28(15):1181-5. PubMed ID: 16816894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvements of enzyme activity and enantioselectivity via combined substrate engineering and covalent immobilization.
    Wang PY; Tsai SW; Chen TL
    Biotechnol Bioeng; 2008 Oct; 101(3):460-9. PubMed ID: 18435484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing lipase/esterase libraries for lipid A hydrolases--discovery of biocatalysts for the detoxification of bacterially-expressed recombinant protein.
    Ahn JM; Wentworth P; Janda KD
    Chem Commun (Camb); 2004 Feb; (4):364-5. PubMed ID: 14765210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipases or esterases: does it really matter? Toward a new bio-physico-chemical classification.
    Ali YB; Verger R; Abousalham A
    Methods Mol Biol; 2012; 861():31-51. PubMed ID: 22426710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enantioselective biocatalysis optimized by directed evolution.
    Jaeger KE; Eggert T
    Curr Opin Biotechnol; 2004 Aug; 15(4):305-13. PubMed ID: 15358000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein engineering of stereoselective Baeyer-Villiger monooxygenases.
    Zhang ZG; Parra LP; Reetz MT
    Chemistry; 2012 Aug; 18(33):10160-72. PubMed ID: 22807240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Newly isolated Streptomyces spp. as enantioselective biocatalysts: hydrolysis of 1,2-O-isopropylidene glycerol racemic esters.
    Molinari F; Romano D; Gandolfi R; Kroppenstedt RM; Marinelli F
    J Appl Microbiol; 2005; 99(4):960-7. PubMed ID: 16162249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.