These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 25678019)

  • 1. Capillarity Guided Patterning of Microliquids.
    Kang M; Park W; Na S; Paik SM; Lee H; Park JW; Kim HY; Jeon NL
    Small; 2015 Jun; 11(23):2789-97. PubMed ID: 25678019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Splitting a droplet for femtoliter liquid patterns and single cell isolation.
    Li H; Yang Q; Li G; Li M; Wang S; Song Y
    ACS Appl Mater Interfaces; 2015 May; 7(17):9060-5. PubMed ID: 25761507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D-printed microfluidic devices.
    Amin R; Knowlton S; Hart A; Yenilmez B; Ghaderinezhad F; Katebifar S; Messina M; Khademhosseini A; Tasoglu S
    Biofabrication; 2016 Jun; 8(2):022001. PubMed ID: 27321137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Screen printing of solder resist as master substrates for fabrication of multi-level microfluidic channels and flask-shaped microstructures for cell-based applications.
    Yue W; Li CW; Xu T; Yang M
    Biosens Bioelectron; 2013 Mar; 41():675-83. PubMed ID: 23122749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D printed microfluidics for biological applications.
    Ho CM; Ng SH; Li KH; Yoon YJ
    Lab Chip; 2015; 15(18):3627-37. PubMed ID: 26237523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Responsive 3D microstructures from virus building blocks.
    Oh S; Kwak EA; Jeon S; Ahn S; Kim JM; Jaworski J
    Adv Mater; 2014 Aug; 26(30):5217-22. PubMed ID: 24942134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inertial microfluidic physics.
    Amini H; Lee W; Di Carlo D
    Lab Chip; 2014 Aug; 14(15):2739-61. PubMed ID: 24914632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A facile "liquid-molding" method to fabricate PDMS microdevices with 3-dimensional channel topography.
    Liu X; Wang Q; Qin J; Lin B
    Lab Chip; 2009 May; 9(9):1200-5. PubMed ID: 19370237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microstructure guided multi-scale liquid patterning on an open surface.
    Park D; Kang M; Choi JW; Paik SM; Ko J; Lee S; Lee Y; Son K; Ha J; Choi M; Park W; Kim HY; Jeon NL
    Lab Chip; 2018 Jul; 18(14):2013-2022. PubMed ID: 29873341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic integration of substantially round glass capillaries for lateral patch clamping on chip.
    Ong WL; Tang KC; Agarwal A; Nagarajan R; Luo LW; Yobas L
    Lab Chip; 2007 Oct; 7(10):1357-66. PubMed ID: 17896022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of a hybrid microfluidic system incorporating both lithographically patterned microchannels and a 3D fiber-formed microfluidic network.
    Bellan LM; Kniazeva T; Kim ES; Epshteyn AA; Cropek DM; Langer R; Borenstein JT
    Adv Healthc Mater; 2012 Mar; 1(2):164-7. PubMed ID: 22708076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical and experimental evaluation of microfluidic sorting devices.
    Taylor JK; Ren CL; Stubley GD
    Biotechnol Prog; 2008; 24(4):981-91. PubMed ID: 19194907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A soft lithographic approach to fabricate patterned microfluidic channels.
    Khademhosseini A; Suh KY; Jon S; Eng G; Yeh J; Chen GJ; Langer R
    Anal Chem; 2004 Jul; 76(13):3675-81. PubMed ID: 15228340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic patterning of cells in extracellular matrix biopolymers: effects of channel size, cell type, and matrix composition on pattern integrity.
    Tan W; Desai TA
    Tissue Eng; 2003 Apr; 9(2):255-67. PubMed ID: 12740088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monolithic multilayer microfluidics via sacrificial molding of 3D-printed isomalt.
    Gelber MK; Bhargava R
    Lab Chip; 2015 Apr; 15(7):1736-41. PubMed ID: 25671493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct 3D-printing of cell-laden constructs in microfluidic architectures.
    Liu J; Hwang HH; Wang P; Whang G; Chen S
    Lab Chip; 2016 Apr; 16(8):1430-8. PubMed ID: 26980159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct patterning of composite biocompatible microstructures using microfluidics.
    Cheung YK; Gillette BM; Zhong M; Ramcharan S; Sia SK
    Lab Chip; 2007 May; 7(5):574-9. PubMed ID: 17476375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simple and cheap microfluidic devices for the preparation of monodisperse emulsions.
    Deng NN; Meng ZJ; Xie R; Ju XJ; Mou CL; Wang W; Chu LY
    Lab Chip; 2011 Dec; 11(23):3963-9. PubMed ID: 22025190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How 3D printing can boost advances in analytical and bioanalytical chemistry.
    Ambrosi A; Bonanni A
    Mikrochim Acta; 2021 Jul; 188(8):265. PubMed ID: 34287702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In silico design and 3D printing of microfluidic chips for the preparation of size-controllable siRNA nanocomplexes.
    Li Y; Bøtker J; Rantanen J; Yang M; Bohr A
    Int J Pharm; 2020 Jun; 583():119388. PubMed ID: 32376446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.