These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 25678121)

  • 21. Comparison of toxicity of different nanorod-type TiO2 polymorphs in vivo and in vitro.
    Park EJ; Lee GH; Shim HW; Kim JH; Cho MH; Kim DW
    J Appl Toxicol; 2014 Apr; 34(4):357-66. PubMed ID: 24122803
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Silver nanoparticles induce endoplasmatic reticulum stress response in zebrafish.
    Christen V; Capelle M; Fent K
    Toxicol Appl Pharmacol; 2013 Oct; 272(2):519-28. PubMed ID: 23800688
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Shape-dependent cytotoxicity and proinflammatory response of poly(3,4-ethylenedioxythiophene) nanomaterials.
    Oh WK; Kim S; Yoon H; Jang J
    Small; 2010 Apr; 6(7):872-9. PubMed ID: 20209653
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New insight into artifactual phenomena during in vitro toxicity assessment of engineered nanoparticles: study of TNF-α adsorption on alumina oxide nanoparticle.
    Pailleux M; Boudard D; Pourchez J; Forest V; Grosseau P; Cottier M
    Toxicol In Vitro; 2013 Apr; 27(3):1049-56. PubMed ID: 23402729
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acute exposure to ZnO nanoparticles induces autophagic immune cell death.
    Johnson BM; Fraietta JA; Gracias DT; Hope JL; Stairiker CJ; Patel PR; Mueller YM; McHugh MD; Jablonowski LJ; Wheatley MA; Katsikis PD
    Nanotoxicology; 2015; 9(6):737-48. PubMed ID: 25378273
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chemical mechanisms of the toxicological properties of nanomaterials: generation of intracellular reactive oxygen species.
    Yan L; Gu Z; Zhao Y
    Chem Asian J; 2013 Oct; 8(10):2342-53. PubMed ID: 23881693
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Template-mediated synthesis and bio-functionalization of flexible lignin-based nanotubes and nanowires.
    Caicedo HM; Dempere LA; Vermerris W
    Nanotechnology; 2012 Mar; 23(10):105605. PubMed ID: 22362196
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Application of embryonic and adult zebrafish for nanotoxicity assessment.
    Wang J; Zhu X; Chen Y; Chang Y
    Methods Mol Biol; 2012; 926():317-29. PubMed ID: 22975972
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanotoxicity of natural minerals: an emerging area of nanotoxicology.
    Ahmad I
    J Biomed Nanotechnol; 2011 Feb; 7(1):32-3. PubMed ID: 21485789
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition.
    Yang H; Liu C; Yang D; Zhang H; Xi Z
    J Appl Toxicol; 2009 Jan; 29(1):69-78. PubMed ID: 18756589
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inflammatory responses of RAW 264.7 macrophages upon exposure to nanoparticles: role of ROS-NFκB signaling pathway.
    Nishanth RP; Jyotsna RG; Schlager JJ; Hussain SM; Reddanna P
    Nanotoxicology; 2011 Dec; 5(4):502-16. PubMed ID: 21417802
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Directionally asymmetric self-assembly of cadmium sulfide nanotubes using porous alumina nanoreactors: need for chemohydrodynamic instability at the nanoscale.
    Varghese A; Datta S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 2):056104. PubMed ID: 23004818
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Large-scale production and characterization of biocompatible colloidal nanoalumina.
    Razali WA; Sreenivasan VK; Goldys EM; Zvyagin AV
    Langmuir; 2014 Dec; 30(50):15091-101. PubMed ID: 25434921
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phagocytic uptake and ROS-mediated cytotoxicity in human hepatic cell line of amphiphilic polyphosphazene nanoparticles.
    Qiu L; Chen Y; Gao M; Zheng C; Zhao Q
    J Biomed Mater Res A; 2013 Jan; 101(1):285-97. PubMed ID: 22969066
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Europium-doped Gd2O3 nanotubes cause the necrosis of primary mouse bone marrow stromal cells through lysosome and mitochondrion damage.
    Jin Y; Chen S; Duan J; Jia G; Zhang J
    J Inorg Biochem; 2015 May; 146():28-36. PubMed ID: 25725393
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Approach to using mechanism-based structure activity relationship (SAR) analysis to assess human health hazard potential of nanomaterials.
    Lai DY
    Food Chem Toxicol; 2015 Nov; 85():120-6. PubMed ID: 26111809
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cytotoxicity of hydroxyapatite nanoparticles is shape and cell dependent.
    Zhao X; Ng S; Heng BC; Guo J; Ma L; Tan TT; Ng KW; Loo SC
    Arch Toxicol; 2013 Jun; 87(6):1037-52. PubMed ID: 22415765
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single-cell nanotoxicity assays of superparamagnetic iron oxide nanoparticles.
    Eustaquio T; Leary JF
    Methods Mol Biol; 2012; 926():69-85. PubMed ID: 22975957
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Increased viable osteoblast density in the presence of nanophase compared to conventional alumina and titania particles.
    Gutwein LG; Webster TJ
    Biomaterials; 2004 Aug; 25(18):4175-83. PubMed ID: 15046907
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Decoding cell death signals in liver inflammation.
    Brenner C; Galluzzi L; Kepp O; Kroemer G
    J Hepatol; 2013 Sep; 59(3):583-94. PubMed ID: 23567086
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.