These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
465 related articles for article (PubMed ID: 25678240)
1. Optimization of chemically defined feed media for monoclonal antibody production in Chinese hamster ovary cells. Kishishita S; Katayama S; Kodaira K; Takagi Y; Matsuda H; Okamoto H; Takuma S; Hirashima C; Aoyagi H J Biosci Bioeng; 2015 Jul; 120(1):78-84. PubMed ID: 25678240 [TBL] [Abstract][Full Text] [Related]
2. Utilization of tyrosine- and histidine-containing dipeptides to enhance productivity and culture viability. Kang S; Mullen J; Miranda LP; Deshpande R Biotechnol Bioeng; 2012 Sep; 109(9):2286-94. PubMed ID: 22447498 [TBL] [Abstract][Full Text] [Related]
3. High zinc ion supplementation of more than 30 μM can increase monoclonal antibody production in recombinant Chinese hamster ovary DG44 cell culture. Kim BG; Park HW Appl Microbiol Biotechnol; 2016 Mar; 100(5):2163-70. PubMed ID: 26512008 [TBL] [Abstract][Full Text] [Related]
4. The effect of amino acid supplementation in an industrial Chinese Hamster Ovary process. Horvat J; Narat M; Spadiut O Biotechnol Prog; 2020 Sep; 36(5):e3001. PubMed ID: 32274904 [TBL] [Abstract][Full Text] [Related]
5. Nutrient supplementation strategy improves cell concentration and longevity, monoclonal antibody production and lactate metabolism of Chinese hamster ovary cells. Pérez-Rodriguez S; Ramírez-Lira MJ; Trujillo-Roldán MA; Valdez-Cruz NA Bioengineered; 2020 Dec; 11(1):463-471. PubMed ID: 32223359 [TBL] [Abstract][Full Text] [Related]
6. Fed-batch CHO cell t-PA production and feed glutamine replacement to reduce ammonia production. Kim DY; Chaudhry MA; Kennard ML; Jardon MA; Braasch K; Dionne B; Butler M; Piret JM Biotechnol Prog; 2013; 29(1):165-75. PubMed ID: 23125190 [TBL] [Abstract][Full Text] [Related]
7. Reduction of ammonia and lactate through the coupling of glutamine synthetase selection and downregulation of lactate dehydrogenase-A in CHO cells. Noh SM; Park JH; Lim MS; Kim JW; Lee GM Appl Microbiol Biotechnol; 2017 Feb; 101(3):1035-1045. PubMed ID: 27704181 [TBL] [Abstract][Full Text] [Related]
8. Impact of hydrolysates on monoclonal antibody productivity, purification and quality in Chinese hamster ovary cells. Ho SC; Nian R; Woen S; Chng J; Zhang P; Yang Y J Biosci Bioeng; 2016 Oct; 122(4):499-506. PubMed ID: 27067279 [TBL] [Abstract][Full Text] [Related]
9. Benchmarking of commercially available CHO cell culture media for antibody production. Reinhart D; Damjanovic L; Kaisermayer C; Kunert R Appl Microbiol Biotechnol; 2015 Jun; 99(11):4645-57. PubMed ID: 25846330 [TBL] [Abstract][Full Text] [Related]
10. Exploring metabolic effects of dipeptide feed media on CHO cell cultures by in silico model-guided flux analysis. Park SY; Song J; Choi DH; Park U; Cho H; Hong BH; Silberberg YR; Lee DY Appl Microbiol Biotechnol; 2024 Dec; 108(1):123. PubMed ID: 38229404 [TBL] [Abstract][Full Text] [Related]
11. Metabolic analysis of antibody producing CHO cells in fed-batch production. Dean J; Reddy P Biotechnol Bioeng; 2013 Jun; 110(6):1735-47. PubMed ID: 23296898 [TBL] [Abstract][Full Text] [Related]
12. Development and manufacturability assessment of chemically-defined medium for the production of protein therapeutics in CHO cells. Ling WL; Bai Y; Cheng C; Padawer I; Wu C Biotechnol Prog; 2015; 31(5):1163-71. PubMed ID: 26013818 [TBL] [Abstract][Full Text] [Related]
13. Decreasing lactate level and increasing antibody production in Chinese Hamster Ovary cells (CHO) by reducing the expression of lactate dehydrogenase and pyruvate dehydrogenase kinases. Zhou M; Crawford Y; Ng D; Tung J; Pynn AF; Meier A; Yuk IH; Vijayasankaran N; Leach K; Joly J; Snedecor B; Shen A J Biotechnol; 2011 Apr; 153(1-2):27-34. PubMed ID: 21392546 [TBL] [Abstract][Full Text] [Related]
14. Differential gene expression of a feed-spiked super-producing CHO cell line. Reinhart D; Damjanovic L; Castan A; Ernst W; Kunert R J Biotechnol; 2018 Nov; 285():23-37. PubMed ID: 30157452 [TBL] [Abstract][Full Text] [Related]
15. Using MVDA with stoichiometric balances to optimize amino acid concentrations in chemically defined CHO cell culture medium for improved culture performance. Salim T; Chauhan G; Templeton N; Ling WLW Biotechnol Bioeng; 2022 Feb; 119(2):452-469. PubMed ID: 34811720 [TBL] [Abstract][Full Text] [Related]
16. Strategies to improve CHO cell culture performance: Targeted deletion of amino acid catabolism and apoptosis genes paired with growth inhibitor supplementation. Lam C; Sargon A; Diaz C; Lai Z; Sangaraju D; Yuk I; Barnard G; Misaghi S Biotechnol Prog; 2024; 40(5):e3471. PubMed ID: 38629737 [TBL] [Abstract][Full Text] [Related]
17. Ala-Cys-Cys-Ala dipeptide dimer alleviates problematic cysteine and cystine levels in media formulations and enhances CHO cell growth and metabolism. Ladiwala P; Cai X; Naik HM; Aliyu L; Schilling M; Antoniewicz MR; Betenbaugh MJ Metab Eng; 2024 Sep; 85():105-115. PubMed ID: 39047893 [TBL] [Abstract][Full Text] [Related]
18. Debottlenecking and reformulating feed media for improved CHO cell growth and titer by data-driven and model-guided analyses. Park SY; Choi DH; Song J; Park U; Cho H; Hong BH; Silberberg YR; Lee DY Biotechnol J; 2023 Dec; 18(12):e2300126. PubMed ID: 37605365 [TBL] [Abstract][Full Text] [Related]
19. Development of hyper osmotic resistant CHO host cells for enhanced antibody production. Kamachi Y; Omasa T J Biosci Bioeng; 2018 Apr; 125(4):470-478. PubMed ID: 29233458 [TBL] [Abstract][Full Text] [Related]
20. Effects of cysteine, asparagine, or glutamine limitations in Chinese hamster ovary cell batch and fed-batch cultures. Ghaffari N; Jardon MA; Krahn N; Butler M; Kennard M; Turner RFB; Gopaluni B; Piret JM Biotechnol Prog; 2020 Mar; 36(2):e2946. PubMed ID: 31823468 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]