These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 25678465)
1. Directed evolution of RebH for site-selective halogenation of large biologically active molecules. Payne JT; Poor CB; Lewis JC Angew Chem Int Ed Engl; 2015 Mar; 54(14):4226-30. PubMed ID: 25678465 [TBL] [Abstract][Full Text] [Related]
2. Improving the stability and catalyst lifetime of the halogenase RebH by directed evolution. Poor CB; Andorfer MC; Lewis JC Chembiochem; 2014 Jun; 15(9):1286-9. PubMed ID: 24849696 [TBL] [Abstract][Full Text] [Related]
3. Engineered RebH Halogenase Variants Demonstrating a Specificity Switch from Tryptophan towards Novel Indole Compounds. Sana B; Ho T; Kannan S; Ke D; Li EHY; Seayad J; Verma CS; Duong HA; Ghadessy FJ Chembiochem; 2021 Sep; 22(18):2791-2798. PubMed ID: 34240527 [TBL] [Abstract][Full Text] [Related]
4. Identifying and Engineering Flavin Dependent Halogenases for Selective Biocatalysis. Lewis JC Acc Chem Res; 2024 Aug; 57(15):2067-2079. PubMed ID: 39038085 [TBL] [Abstract][Full Text] [Related]
5. Robust in vitro activity of RebF and RebH, a two-component reductase/halogenase, generating 7-chlorotryptophan during rebeccamycin biosynthesis. Yeh E; Garneau S; Walsh CT Proc Natl Acad Sci U S A; 2005 Mar; 102(11):3960-5. PubMed ID: 15743914 [TBL] [Abstract][Full Text] [Related]
6. Reengineering a tryptophan halogenase to preferentially chlorinate a direct alkaloid precursor. Glenn WS; Nims E; O'Connor SE J Am Chem Soc; 2011 Dec; 133(48):19346-9. PubMed ID: 22050348 [TBL] [Abstract][Full Text] [Related]
7. Directed Evolution of RebH for Catalyst-Controlled Halogenation of Indole C-H Bonds. Andorfer MC; Park HJ; Vergara-Coll J; Lewis JC Chem Sci; 2016 Jun; 7(6):3720-3729. PubMed ID: 27347367 [TBL] [Abstract][Full Text] [Related]
8. Structure-based switch of regioselectivity in the flavin-dependent tryptophan 6-halogenase Thal. Moritzer AC; Minges H; Prior T; Frese M; Sewald N; Niemann HH J Biol Chem; 2019 Feb; 294(7):2529-2542. PubMed ID: 30559288 [TBL] [Abstract][Full Text] [Related]
9. Directed Evolution of Flavin-Dependent Halogenases for Site- and Atroposelective Halogenation of 3-Aryl-4(3 Snodgrass HM; Mondal D; Lewis JC J Am Chem Soc; 2022 Sep; 144(36):16676-16682. PubMed ID: 36044712 [TBL] [Abstract][Full Text] [Related]
10. Structure and action of the myxobacterial chondrochloren halogenase CndH: a new variant of FAD-dependent halogenases. Buedenbender S; Rachid S; Müller R; Schulz GE J Mol Biol; 2009 Jan; 385(2):520-30. PubMed ID: 19000696 [TBL] [Abstract][Full Text] [Related]
12. Enantioselective Desymmetrization of Methylenedianilines via Enzyme-Catalyzed Remote Halogenation. Payne JT; Butkovich PH; Gu Y; Kunze KN; Park HJ; Wang DS; Lewis JC J Am Chem Soc; 2018 Jan; 140(2):546-549. PubMed ID: 29294291 [TBL] [Abstract][Full Text] [Related]
13. Understanding and Improving the Activity of Flavin-Dependent Halogenases via Random and Targeted Mutagenesis. Andorfer MC; Lewis JC Annu Rev Biochem; 2018 Jun; 87():159-185. PubMed ID: 29589959 [TBL] [Abstract][Full Text] [Related]
14. Flavin redox chemistry precedes substrate chlorination during the reaction of the flavin-dependent halogenase RebH. Yeh E; Cole LJ; Barr EW; Bollinger JM; Ballou DP; Walsh CT Biochemistry; 2006 Jun; 45(25):7904-12. PubMed ID: 16784243 [TBL] [Abstract][Full Text] [Related]
15. Structures, mechanisms and applications of flavin-dependent halogenases. Phintha A; Prakinee K; Chaiyen P Enzymes; 2020; 47():327-364. PubMed ID: 32951827 [TBL] [Abstract][Full Text] [Related]
16. Discovery of a Promiscuous Non-Heme Iron Halogenase in Ambiguine Alkaloid Biogenesis: Implication for an Evolvable Enzyme Family for Late-Stage Halogenation of Aliphatic Carbons in Small Molecules. Hillwig ML; Zhu Q; Ittiamornkul K; Liu X Angew Chem Int Ed Engl; 2016 May; 55(19):5780-4. PubMed ID: 27027281 [TBL] [Abstract][Full Text] [Related]
17. Evolved Aliphatic Halogenases Enable Regiocomplementary C-H Functionalization of a Pharmaceutically Relevant Compound. Hayashi T; Ligibel M; Sager E; Voss M; Hunziker J; Schroer K; Snajdrova R; Buller R Angew Chem Int Ed Engl; 2019 Dec; 58(51):18535-18539. PubMed ID: 31589798 [TBL] [Abstract][Full Text] [Related]
18. Regioselective arene halogenation using the FAD-dependent halogenase RebH. Payne JT; Andorfer MC; Lewis JC Angew Chem Int Ed Engl; 2013 May; 52(20):5271-4. PubMed ID: 23592388 [TBL] [Abstract][Full Text] [Related]
19. Enzymatic halogenation of tryptophan on a gram scale. Frese M; Sewald N Angew Chem Int Ed Engl; 2015 Jan; 54(1):298-301. PubMed ID: 25394328 [TBL] [Abstract][Full Text] [Related]
20. Indole and azaindole halogenation catalyzed by the RebH enzyme variant 3-LSR utilizing co-purified Li EHY; Sana B; Ho T; Ke D; Ghadessy FJ; Duong HA; Seayad J Front Bioeng Biotechnol; 2022; 10():1032707. PubMed ID: 36588932 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]