These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 25678465)

  • 21. Structural insights into regioselectivity in the enzymatic chlorination of tryptophan.
    Zhu X; De Laurentis W; Leang K; Herrmann J; Ihlefeld K; van Pée KH; Naismith JH
    J Mol Biol; 2009 Aug; 391(1):74-85. PubMed ID: 19501593
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Halogenating Enzymes for Active Agent Synthesis: First Steps Are Done and Many Have to Follow.
    Fejzagić AV; Gebauer J; Huwa N; Classen T
    Molecules; 2019 Nov; 24(21):. PubMed ID: 31694313
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure-Guided Reprogramming of a Hydroxylase To Halogenate Its Small Molecule Substrate.
    Mitchell AJ; Dunham NP; Bergman JA; Wang B; Zhu Q; Chang WC; Liu X; Boal AK
    Biochemistry; 2017 Jan; 56(3):441-444. PubMed ID: 28029241
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Halogenase engineering and its utility in medicinal chemistry.
    Fraley AE; Sherman DH
    Bioorg Med Chem Lett; 2018 Jun; 28(11):1992-1999. PubMed ID: 29731363
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of Laboratory-Evolved Flavin-Dependent Halogenases Affords a Computational Model for Predicting Halogenase Site Selectivity.
    Andorfer MC; Evans D; Yang S; He CQ; Girlich AM; Vergara-Coll J; Sukumar N; Houk KN; Lewis JC
    Chem Catal; 2022 Oct; 2(10):2658-2674. PubMed ID: 36569427
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reaction pathway engineering converts a radical hydroxylase into a halogenase.
    Neugebauer ME; Kissman EN; Marchand JA; Pelton JG; Sambold NA; Millar DC; Chang MCY
    Nat Chem Biol; 2022 Feb; 18(2):171-179. PubMed ID: 34937913
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Catalytic mechanisms, basic roles, and biotechnological and environmental significance of halogenating enzymes.
    Chen X; van Pée KH
    Acta Biochim Biophys Sin (Shanghai); 2008 Mar; 40(3):183-93. PubMed ID: 18330472
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Structure-Guided Switch in the Regioselectivity of a Tryptophan Halogenase.
    Shepherd SA; Menon BR; Fisk H; Struck AW; Levy C; Leys D; Micklefield J
    Chembiochem; 2016 May; 17(9):821-4. PubMed ID: 26840773
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Laboratory evolution of stereoselective enzymes: a prolific source of catalysts for asymmetric reactions.
    Reetz MT
    Angew Chem Int Ed Engl; 2011 Jan; 50(1):138-74. PubMed ID: 20715024
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel Arylindigoids by Late-Stage Derivatization of Biocatalytically Synthesized Dibromoindigo.
    Schnepel C; Dodero VI; Sewald N
    Chemistry; 2021 Mar; 27(17):5404-5411. PubMed ID: 33496351
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enzymatic Halogenation and Dehalogenation Reactions: Pervasive and Mechanistically Diverse.
    Agarwal V; Miles ZD; Winter JM; Eustáquio AS; El Gamal AA; Moore BS
    Chem Rev; 2017 Apr; 117(8):5619-5674. PubMed ID: 28106994
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabolic engineering of Corynebacterium glutamicum for the fermentative production of halogenated tryptophan.
    Veldmann KH; Minges H; Sewald N; Lee JH; Wendisch VF
    J Biotechnol; 2019 Feb; 291():7-16. PubMed ID: 30579891
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of Halogenase Enzymes for Use in Synthesis.
    Latham J; Brandenburger E; Shepherd SA; Menon BRK; Micklefield J
    Chem Rev; 2018 Jan; 118(1):232-269. PubMed ID: 28466644
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Specific enzymatic chlorination of tryptophan and tryptophan derivatives.
    van Pée KH; Hölzer M
    Adv Exp Med Biol; 1999; 467():603-9. PubMed ID: 10721106
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Crucial Role of Methodology Development in Directed Evolution of Selective Enzymes.
    Qu G; Li A; Acevedo-Rocha CG; Sun Z; Reetz MT
    Angew Chem Int Ed Engl; 2020 Aug; 59(32):13204-13231. PubMed ID: 31267627
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Understanding Flavin-Dependent Halogenase Reactivity via Substrate Activity Profiling.
    Andorfer MC; Grob JE; Hajdin CE; Chael JR; Siuti P; Lilly J; Tan KL; Lewis JC
    ACS Catal; 2017 Mar; 7(3):1897-1904. PubMed ID: 28989809
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enzymatic Late-Stage Halogenation of Peptides.
    Schnepel C; Moritzer AC; Gäfe S; Montua N; Minges H; Nieß A; Niemann HH; Sewald N
    Chembiochem; 2023 Jan; 24(1):e202200569. PubMed ID: 36259362
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Simple Combinatorial Codon Mutagenesis Method for Targeted Protein Engineering.
    Belsare KD; Andorfer MC; Cardenas FS; Chael JR; Park HJ; Lewis JC
    ACS Synth Biol; 2017 Mar; 6(3):416-420. PubMed ID: 28033708
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Directed evolution drives the next generation of biocatalysts.
    Turner NJ
    Nat Chem Biol; 2009 Aug; 5(8):567-73. PubMed ID: 19620998
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineering Flavin-Dependent Halogenases.
    Payne JT; Andorfer MC; Lewis JC
    Methods Enzymol; 2016; 575():93-126. PubMed ID: 27417926
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.