These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
377 related articles for article (PubMed ID: 25678603)
1. Quantitative proteomic analysis reveals a simple strategy of global resource allocation in bacteria. Hui S; Silverman JM; Chen SS; Erickson DW; Basan M; Wang J; Hwa T; Williamson JR Mol Syst Biol; 2015 Feb; 11(1):784. PubMed ID: 25678603 [TBL] [Abstract][Full Text] [Related]
2. A global resource allocation strategy governs growth transition kinetics of Escherichia coli. Erickson DW; Schink SJ; Patsalo V; Williamson JR; Gerland U; Hwa T Nature; 2017 Nov; 551(7678):119-123. PubMed ID: 29072300 [TBL] [Abstract][Full Text] [Related]
3. Principles of proteome allocation are revealed using proteomic data and genome-scale models. Yang L; Yurkovich JT; Lloyd CJ; Ebrahim A; Saunders MA; Palsson BO Sci Rep; 2016 Nov; 6():36734. PubMed ID: 27857205 [TBL] [Abstract][Full Text] [Related]
4. Probing the molecular physiology of the microbial organism, Escherichia coli using proteomics. VanBogelen RA Adv Biochem Eng Biotechnol; 2003; 83():27-55. PubMed ID: 12934925 [TBL] [Abstract][Full Text] [Related]
5. Optimal proteome allocation and the temperature dependence of microbial growth laws. Mairet F; Gouzé JL; de Jong H NPJ Syst Biol Appl; 2021 Mar; 7(1):14. PubMed ID: 33686098 [TBL] [Abstract][Full Text] [Related]
7. Overflow metabolism in Escherichia coli results from efficient proteome allocation. Basan M; Hui S; Okano H; Zhang Z; Shen Y; Williamson JR; Hwa T Nature; 2015 Dec; 528(7580):99-104. PubMed ID: 26632588 [TBL] [Abstract][Full Text] [Related]
8. A quantitative method for proteome reallocation using minimal regulatory interventions. Lastiri-Pancardo G; Mercado-Hernández JS; Kim J; Jiménez JI; Utrilla J Nat Chem Biol; 2020 Sep; 16(9):1026-1033. PubMed ID: 32661378 [TBL] [Abstract][Full Text] [Related]
9. Multi-level evaluation of Escherichia coli polyphosphate related mutants using global transcriptomic, proteomic and phenomic analyses. Varas M; Valdivieso C; Mauriaca C; Ortíz-Severín J; Paradela A; Poblete-Castro I; Cabrera R; Chávez FP Biochim Biophys Acta Gen Subj; 2017 Apr; 1861(4):871-883. PubMed ID: 28069396 [TBL] [Abstract][Full Text] [Related]
10. Proteome allocation is linked to transcriptional regulation through a modularized transcriptome. Patel A; McGrosso D; Hefner Y; Campeau A; Sastry AV; Maurya S; Rychel K; Gonzalez DJ; Palsson BO Nat Commun; 2024 Jun; 15(1):5234. PubMed ID: 38898010 [TBL] [Abstract][Full Text] [Related]
11. Emergence of robust growth laws from optimal regulation of ribosome synthesis. Scott M; Klumpp S; Mateescu EM; Hwa T Mol Syst Biol; 2014 Aug; 10(8):747. PubMed ID: 25149558 [TBL] [Abstract][Full Text] [Related]
12. Genome-wide transcriptome and proteome analysis of Escherichia coli expressing IrrE, a global regulator of Deinococcus radiodurans. Zhou Z; Zhang W; Chen M; Pan J; Lu W; Ping S; Yan Y; Hou X; Yuan M; Zhan Y; Lin M Mol Biosyst; 2011 May; 7(5):1613-20. PubMed ID: 21380435 [TBL] [Abstract][Full Text] [Related]
13. Yeast Interspecies Comparative Proteomics Reveals Divergence in Expression Profiles and Provides Insights into Proteome Resource Allocation and Evolutionary Roles of Gene Duplication. Kito K; Ito H; Nohara T; Ohnishi M; Ishibashi Y; Takeda D Mol Cell Proteomics; 2016 Jan; 15(1):218-35. PubMed ID: 26560065 [TBL] [Abstract][Full Text] [Related]
14. Coordination of bacterial proteome with metabolism by cyclic AMP signalling. You C; Okano H; Hui S; Zhang Z; Kim M; Gunderson CW; Wang YP; Lenz P; Yan D; Hwa T Nature; 2013 Aug; 500(7462):301-6. PubMed ID: 23925119 [TBL] [Abstract][Full Text] [Related]
15. A proteomic view of cell physiology of Bacillus subtilis--bringing the genome sequence to life. Hecker M Adv Biochem Eng Biotechnol; 2003; 83():57-92. PubMed ID: 12934926 [TBL] [Abstract][Full Text] [Related]
16. How Does Liao C; Priyanka P; Lai YH; Rao CV; Lu T ACS Synth Biol; 2024 Sep; 13(9):2718-2732. PubMed ID: 39120961 [TBL] [Abstract][Full Text] [Related]
17. A Minimalistic Resource Allocation Model to Explain Ubiquitous Increase in Protein Expression with Growth Rate. Barenholz U; Keren L; Segal E; Milo R PLoS One; 2016; 11(4):e0153344. PubMed ID: 27073913 [TBL] [Abstract][Full Text] [Related]
18. Systems-wide temporal proteomic profiling in glucose-starved Bacillus subtilis. Otto A; Bernhardt J; Meyer H; Schaffer M; Herbst FA; Siebourg J; Mäder U; Lalk M; Hecker M; Becher D Nat Commun; 2010; 1():137. PubMed ID: 21266987 [TBL] [Abstract][Full Text] [Related]
19. Growth of Cyanobacteria Is Constrained by the Abundance of Light and Carbon Assimilation Proteins. Jahn M; Vialas V; Karlsen J; Maddalo G; Edfors F; Forsström B; Uhlén M; Käll L; Hudson EP Cell Rep; 2018 Oct; 25(2):478-486.e8. PubMed ID: 30304686 [TBL] [Abstract][Full Text] [Related]
20. Holistic engineering of cell-free systems through proteome-reprogramming synthetic circuits. Contreras-Llano LE; Meyer C; Liu Y; Sarker M; Lim S; Longo ML; Tan C Nat Commun; 2020 Jun; 11(1):3138. PubMed ID: 32561745 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]