These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 25678744)

  • 21. 3D silver metallized nanotrenches fabricated by nanoimprint lithography as flexible SERS detection platform.
    Colniță A; Marconi D; Dina NE; Brezeștean I; Bogdan D; Turcu I
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Aug; 276():121232. PubMed ID: 35429861
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quasi-3D gold nanoring cavity arrays with high-density hot-spots for SERS applications via nanosphere lithography.
    Ho CC; Zhao K; Lee TY
    Nanoscale; 2014 Aug; 6(15):8606-11. PubMed ID: 24978350
    [TBL] [Abstract][Full Text] [Related]  

  • 23. FDTD Analysis of Hotspot-Enabling Hybrid Nanohole-Nanoparticle Structures for SERS Detection.
    Gomez-Cruz J; Bdour Y; Stamplecoskie K; Escobedo C
    Biosensors (Basel); 2022 Feb; 12(2):. PubMed ID: 35200388
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Soft UV nanoimprint lithography-designed highly sensitive substrates for SERS detection.
    Cottat M; Lidgi-Guigui N; Tijunelyte I; Barbillon G; Hamouda F; Gogol P; Aassime A; Lourtioz JM; Bartenlian B; de la Chapelle ML
    Nanoscale Res Lett; 2014 Dec; 9(1):2361. PubMed ID: 26089008
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Flow-through vs flow-over: analysis of transport and binding in nanohole array plasmonic biosensors.
    Escobedo C; Brolo AG; Gordon R; Sinton D
    Anal Chem; 2010 Dec; 82(24):10015-20. PubMed ID: 21080637
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Self-Assembled Metal Nanohole Arrays with Tunable Plasmonic Properties for SERS Single-Molecule Detection.
    Lospinoso D; Colombelli A; Lomascolo M; Rella R; Manera MG
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159725
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays.
    Yu Q; Guan P; Qin D; Golden G; Wallace PM
    Nano Lett; 2008 Jul; 8(7):1923-8. PubMed ID: 18563939
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced extraordinary optical transmission and refractive-index sensing sensitivity in tapered plasmonic nanohole arrays.
    Chen Z; Li P; Zhang S; Chen Y; Liu P; Duan H
    Nanotechnology; 2019 Aug; 30(33):335201. PubMed ID: 31013483
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Long-range surface plasmon resonance and surface-enhanced Raman scattering on X-shaped gold plasmonic nanohole arrays.
    Hou C; Galvan DD; Meng G; Yu Q
    Phys Chem Chem Phys; 2017 Sep; 19(35):24126-24134. PubMed ID: 28837198
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On-chip surface-based detection with nanohole arrays.
    De Leebeeck A; Kumar LK; de Lange V; Sinton D; Gordon R; Brolo AG
    Anal Chem; 2007 Jun; 79(11):4094-100. PubMed ID: 17447728
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Actuated plasmonic nanohole arrays for sensing and optical spectroscopy applications.
    Kotlarek D; Fossati S; Venugopalan P; Gisbert Quilis N; Slabý J; Homola J; Lequeux M; Amiard F; Lamy de la Chapelle M; Jonas U; Dostálek J
    Nanoscale; 2020 May; 12(17):9756-9768. PubMed ID: 32324184
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermoplasmonic Semitransparent Nanohole Electrodes.
    Tordera D; Zhao D; Volkov AV; Crispin X; Jonsson MP
    Nano Lett; 2017 May; 17(5):3145-3151. PubMed ID: 28441500
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes.
    Yang JC; Ji J; Hogle JM; Larson DN
    Nano Lett; 2008 Sep; 8(9):2718-24. PubMed ID: 18710296
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Large-scale uniform Au nanodisk arrays fabricated via x-ray interference lithography for reproducible and sensitive SERS substrate.
    Zhang P; Yang S; Wang L; Zhao J; Zhu Z; Liu B; Zhong J; Sun X
    Nanotechnology; 2014 Jun; 25(24):245301. PubMed ID: 24859832
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rapid Fabrication of a Flexible and Transparent Ag Nanocubes@PDMS Film as a SERS Substrate with High Performance.
    Li L; Chin WS
    ACS Appl Mater Interfaces; 2020 Aug; 12(33):37538-37548. PubMed ID: 32701289
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plasmonic Gold Nanohole Array for Surface-Enhanced Raman Scattering Detection of DNA Methylation.
    Luo X; Xing Y; Galvan DD; Zheng E; Wu P; Cai C; Yu Q
    ACS Sens; 2019 Jun; 4(6):1534-1542. PubMed ID: 31074265
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Suspended 3D metallic dimers with sub-10 nm gap for high-sensitive SERS detection.
    Zeng P; Zhou Y; Shu Z; Liang H; Zhang X; Chen Y; Duan H; Zheng M
    Nanotechnology; 2022 Dec; 34(9):. PubMed ID: 36384034
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plasmonic Nanohole Arrays on Top of Porous Silicon Sensors: A Win-Win Situation.
    Balderas-Valadez RF; Pacholski C
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):36436-36444. PubMed ID: 34297537
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanopore-induced spontaneous concentration for optofluidic sensing and particle assembly.
    Kumar S; Wittenberg NJ; Oh SH
    Anal Chem; 2013 Jan; 85(2):971-7. PubMed ID: 23214989
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Testing gold nanostructures fabricated by hole-mask colloidal lithography as potential substrates for SERS sensors: sensitivity, signal variability, and the aspect of adsorbate deposition.
    Peksa V; Lebrušková P; Šípová H; Štěpánek J; Bok J; Homola J; Procházka M
    Phys Chem Chem Phys; 2016 Jul; 18(29):19613-20. PubMed ID: 27381363
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.