These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 25678941)

  • 1. Charge Relaxation Dynamics of an Electrolytic Nanocapacitor.
    Thakore V; Hickman JJ
    J Phys Chem C Nanomater Interfaces; 2015 Jan; 119(4):2121-2132. PubMed ID: 25678941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A "counter-charge layer in generalized solvents" framework for electrical double layers in neat and hybrid ionic liquid electrolytes.
    Feng G; Huang J; Sumpter BG; Meunier V; Qiao R
    Phys Chem Chem Phys; 2011 Aug; 13(32):14723-34. PubMed ID: 21755079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ionic Layering and Overcharging in Electrical Double Layers in a Poisson-Boltzmann Model.
    Gupta A; Govind Rajan A; Carter EA; Stone HA
    Phys Rev Lett; 2020 Oct; 125(18):188004. PubMed ID: 33196271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-Dimensional Molecular Mapping of Ionic Liquids at Electrified Interfaces.
    Zhou S; Panse KS; Motevaselian MH; Aluru NR; Zhang Y
    ACS Nano; 2020 Dec; 14(12):17515-17523. PubMed ID: 33227191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Periodic energy conversion in an electric-double-layer capacitor.
    Atlas I; Ramon GZ
    J Colloid Interface Sci; 2018 Nov; 530():675-685. PubMed ID: 30015153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Central-moment-based Galilean-invariant multiple-relaxation-time collision model.
    Shan X
    Phys Rev E; 2019 Oct; 100(4-1):043308. PubMed ID: 31771023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Innermost Ion Association Configuration Is a Key Structural Descriptor of Ionic Liquids at Electrified Interfaces.
    Panse KS; Wu H; Zhou S; Zhao F; Aluru NR; Zhang Y
    J Phys Chem Lett; 2022 Oct; 13(40):9464-9472. PubMed ID: 36198103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The importance of ion size and electrode curvature on electrical double layers in ionic liquids.
    Feng G; Qiao R; Huang J; Dai S; Sumpter BG; Meunier V
    Phys Chem Chem Phys; 2011 Jan; 13(3):1152-61. PubMed ID: 21079823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dense ionic fluids confined in planar capacitors: in- and out-of-plane structure from classical density functional theory.
    Härtel A; Samin S; van Roij R
    J Phys Condens Matter; 2016 Jun; 28(24):244007. PubMed ID: 27116552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and dynamics of electrical double layers in organic electrolytes.
    Feng G; Huang J; Sumpter BG; Meunier V; Qiao R
    Phys Chem Chem Phys; 2010; 12(20):5468-79. PubMed ID: 20467670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of electric double layers in capacitive systems and to what extent (classical) density functional theory describes it.
    Härtel A
    J Phys Condens Matter; 2017 Oct; 29(42):423002. PubMed ID: 28898203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pH-regulated ionic conductance in a nanochannel with overlapped electric double layers.
    Ma Y; Yeh LH; Lin CY; Mei L; Qian S
    Anal Chem; 2015 Apr; 87(8):4508-14. PubMed ID: 25803424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanopatterning of Electrode Surfaces as a Potential Route to Improve the Energy Density of Electric Double-Layer Capacitors: Insight from Molecular Simulations.
    Xing L; Vatamanu J; Smith GD; Bedrov D
    J Phys Chem Lett; 2012 May; 3(9):1124-9. PubMed ID: 26288046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Influence of Anion Shape on the Electrical Double Layer Microstructure and Capacitance of Ionic Liquids-Based Supercapacitors by Molecular Simulations.
    Chen M; Li S; Feng G
    Molecules; 2017 Feb; 22(2):. PubMed ID: 28212336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing Electric Double-Layer Composition via in Situ Vibrational Spectroscopy and Molecular Simulations.
    Raberg JH; Vatamanu J; Harris SJ; van Oversteeg CHM; Ramos A; Borodin O; Cuk T
    J Phys Chem Lett; 2019 Jun; 10(12):3381-3389. PubMed ID: 31141378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical potentials of electric double layers at metal-electrolyte interfaces: dependence on electrolyte concentration and electrode materials, and application to field-effect transistors.
    Nanjo C; Yokogawa D; Matsushita MM; Awaga K
    Phys Chem Chem Phys; 2020 Jun; 22(22):12395-12402. PubMed ID: 32347251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microscopic EDL structures and charge-potential relation on stepped platinum surface: Insights from the ab initio molecular dynamics simulations.
    Li P; Liu Y; Chen S
    J Chem Phys; 2022 Mar; 156(10):104701. PubMed ID: 35291796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The roles of electronic exchange and correlation in charge-transfer- to-solvent dynamics: Many-electron nonadiabatic mixed quantum/classical simulations of photoexcited sodium anions in the condensed phase.
    Glover WJ; Larsen RE; Schwartz BJ
    J Chem Phys; 2008 Oct; 129(16):164505. PubMed ID: 19045282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Insights into the Complex Relationship between Capacitance and Pore Morphology in Nanoporous Carbon-based Supercapacitors.
    Pak AJ; Hwang GS
    ACS Appl Mater Interfaces; 2016 Dec; 8(50):34659-34667. PubMed ID: 27936557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pulse Dynamics of Electric Double Layer Formation on All-Solid-State Graphene Field-Effect Transistors.
    Xu K; Islam MM; Guzman D; Seabaugh AC; Strachan A; Fullerton-Shirey SK
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):43166-43176. PubMed ID: 30422628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.