These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 25679018)

  • 1. Raman spectroscopy and the material study of nanocomposite membranes from poly(ε-caprolactone) with biocompatibility testing in osteoblast-like cells.
    Wesełucha-Birczyńska A; Swiętek M; Sołtysiak E; Galiński P; Płachta Ł; Piekara K; Błażewicz M
    Analyst; 2015 Apr; 140(7):2311-20. PubMed ID: 25679018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro biocompatibility and antimicrobial activity of poly(ε-caprolactone)/montmorillonite nanocomposites.
    Corrales T; Larraza I; Catalina F; Portolés T; Ramírez-Santillán C; Matesanz M; Abrusci C
    Biomacromolecules; 2012 Dec; 13(12):4247-56. PubMed ID: 23153018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early Recognition of the PCL/Fibrous Carbon Nanocomposites Interaction with Osteoblast-like Cells by Raman Spectroscopy.
    Wesełucha-Birczyńska A; Kołodziej A; Świętek M; Skalniak Ł; Długoń E; Pajda M; Błażewicz M
    Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functionalized PCL/HA nanocomposites as microporous membranes for bone regeneration.
    Basile MA; d'Ayala GG; Malinconico M; Laurienzo P; Coudane J; Nottelet B; Ragione FD; Oliva A
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():457-68. PubMed ID: 25579947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amino-Functionalized Multiwalled Carbon Nanotubes Lead to Successful Ring-Opening Polymerization of Poly(ε-caprolactone): Enhanced Interfacial Bonding and Optimized Mechanical Properties.
    Roumeli E; Papageorgiou DG; Tsanaktsis V; Terzopoulou Z; Chrissafis K; Avgeropoulos A; Bikiaris DN
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11683-94. PubMed ID: 25950403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of low contents of superhydrophilic MWCNT on the properties and cell viability of electrospun poly (butylene adipate-co-terephthalate) fibers.
    Rodrigues BVM; Silva AS; Melo GFS; Vasconscellos LMR; Marciano FR; Lobo AO
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():782-791. PubMed ID: 26652433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradable polymer nanocomposites: the role of nanoclays on the thermomechanical characteristics and the electrospun fibrous structure.
    Marras SI; Kladi KP; Tsivintzelis I; Zuburtikudis I; Panayiotou C
    Acta Biomater; 2008 May; 4(3):756-65. PubMed ID: 18294944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel poly(L-lactide) PLLA/SWNTs nanocomposites for biomedical applications: material characterization and biocompatibility evaluation.
    Armentano I; Marinucci L; Dottori M; Balloni S; Fortunati E; Pennacchi M; Becchetti E; Locci P; Kenny JM
    J Biomater Sci Polym Ed; 2011; 22(4-6):541-56. PubMed ID: 20566045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of biphasic calcium phosphates on drug release and biological and mechanical properties of poly(epsilon-caprolactone) composite membranes.
    Kim HW; Knowles JC; Kim HE
    J Biomed Mater Res A; 2004 Sep; 70(3):467-79. PubMed ID: 15293321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the resistance to bacterial growth of star-shaped poly(ε-caprolactone)-co-poly(ethylene glycol) grafted onto functionalized carbon nanotubes nanocomposites.
    Cajero-Zul LR; López-Dellamary FA; Gómez-Salazar S; Vázquez-Lepe M; Vera-Graziano R; Torres-Vitela MR; Olea-Rodríguez MA; Nuño-Donlucas SM
    J Biomater Sci Polym Ed; 2019 Feb; 30(3):163-189. PubMed ID: 30556772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of Bioactive and Reinforced Bioresorbable Nanocomposites by Reduced Nano-Graphene Oxide Carbon Dots.
    Erdal NB; Hakkarainen M
    Biomacromolecules; 2018 Mar; 19(3):1074-1081. PubMed ID: 29438617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A study of the interactions between human osteoblast-like cells and polymer composites with functionalized graphene derivatives using 2D correlation spectroscopy (2D-COS).
    Kołodziej A; Wesełucha-Birczyńska A; Długoń E; Świętek M; Gubernat M; Skalniak Ł; Błażewicz M
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jan; 285():121862. PubMed ID: 36122465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remotely actuated shape memory effect of electrospun composite nanofibers.
    Gong T; Li W; Chen H; Wang L; Shao S; Zhou S
    Acta Biomater; 2012 Mar; 8(3):1248-59. PubMed ID: 22186162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electro-active shape memory properties of poly(ε-caprolactone)/functionalized multiwalled carbon nanotube nanocomposite.
    Xiao Y; Zhou S; Wang L; Gong T
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3506-14. PubMed ID: 21090574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioactivity improvement of poly(epsilon-caprolactone) membrane with the addition of nanofibrous bioactive glass.
    Lee HH; Yu HS; Jang JH; Kim HW
    Acta Biomater; 2008 May; 4(3):622-9. PubMed ID: 18171636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface properties of amino-functionalized poly(ε-caprolactone) membranes and the improvement of human mesenchymal stem cell behavior.
    Zhang Y; Zhang Y; Chen M; Yan J; Ye Z; Zhou Y; Tan W; Lang M
    J Colloid Interface Sci; 2012 Feb; 368(1):64-9. PubMed ID: 22154913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystallization, mechanical properties, and controlled enzymatic degradation of biodegradable poly(epsilon-caprolactone)/multi-walled carbon nanotubes nanocomposites.
    Qiu Z; Wang H; Xu C
    J Nanosci Nanotechnol; 2011 Sep; 11(9):7884-93. PubMed ID: 22097501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differentiation Capacity of Monocyte-Derived Multipotential Cells on Nanocomposite Poly(e-caprolactone)-Based Thin Films.
    Koliakou I; Gounari E; Nerantzaki M; Pavlidou E; Bikiaris D; Kaloyianni M; Koliakos G
    Tissue Eng Regen Med; 2019 Apr; 16(2):161-175. PubMed ID: 30989043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective dispersion of carbon nanotubes and nanoclay in biodegradable poly(ε-caprolactone)/poly(lactic acid) blends with improved toughness, strength and thermal stability.
    Zhu B; Bai T; Wang P; Wang Y; Liu C; Shen C
    Int J Biol Macromol; 2020 Jun; 153():1272-1280. PubMed ID: 31758994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct cell responses to substrates consisting of poly(ε-caprolactone) and poly(propylene fumarate) in the presence or absence of cross-links.
    Wang K; Cai L; Hao F; Xu X; Cui M; Wang S
    Biomacromolecules; 2010 Oct; 11(10):2748-59. PubMed ID: 20822174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.