These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 25679045)

  • 1. Long-term and seasonal trend decomposition of Maumee River nutrient inputs to western Lake Erie.
    Stow CA; Cha Y; Johnson LT; Confesor R; Richards RP
    Environ Sci Technol; 2015 Mar; 49(6):3392-400. PubMed ID: 25679045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Patterns in Lake Erie Phosphorus and Chlorophyll
    Rowland FE; Stow CA; Johengen TH; Burtner AM; Palladino D; Gossiaux DC; Davis TW; Johnson LT; Ruberg S
    Environ Sci Technol; 2020 Jan; 54(2):835-841. PubMed ID: 31859490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Effects of Cyanobacterial Blooms in Eutrophic Lakes on Water Quality of Connected Rivers].
    Yu ML; Hong GX; Xu H; Zhu GW; Zhu MY; Quan QM
    Huan Jing Ke Xue; 2019 Feb; 40(2):603-613. PubMed ID: 30628322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating the Impact of Legacy P and Agricultural Conservation Practices on Nutrient Loads from the Maumee River Watershed.
    Muenich RL; Kalcic M; Scavia D
    Environ Sci Technol; 2016 Aug; 50(15):8146-54. PubMed ID: 27322563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Climatic and agricultural contributions to changing loads in two watersheds in Ohio.
    Moog DB; Whiting PJ
    J Environ Qual; 2002; 31(1):83-9. PubMed ID: 11837448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Climate Change and Nutrient Loading in the Western Lake Erie Basin: Warming Can Counteract a Wetter Future.
    Kalcic MM; Muenich RL; Basile S; Steiner AL; Kirchhoff C; Scavia D
    Environ Sci Technol; 2019 Jul; 53(13):7543-7550. PubMed ID: 31244082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Source contribution to phosphorus loads from the Maumee River watershed to Lake Erie.
    Kast JB; Apostel AM; Kalcic MM; Muenich RL; Dagnew A; Long CM; Evenson G; Martin JF
    J Environ Manage; 2021 Feb; 279():111803. PubMed ID: 33341725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excess nutrient loads to Lake Taihu: Opportunities for nutrient reduction.
    Wang M; Strokal M; Burek P; Kroeze C; Ma L; Janssen ABG
    Sci Total Environ; 2019 May; 664():865-873. PubMed ID: 30769310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Spatiotemporal Variations in Nutrient Loads in River-lake System of Changdang Lake Catchment in 2016-2017].
    Li XY; Li HP; Jiang SY; Ma P; Lai XJ; Deng JC; Chen DQ; Geng JW
    Huan Jing Ke Xue; 2020 Sep; 41(9):4042-4052. PubMed ID: 33124284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Climatic and agricultural factors in nutrient exports from two watersheds in Ohio.
    Moog DB; Whiting PJ
    J Environ Qual; 2002; 31(1):72-83. PubMed ID: 11837447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nutrient sources and composition of recent algal blooms and eutrophication in the northern Jiulong River, Southeast China.
    Li Y; Cao W; Su C; Hong H
    Mar Pollut Bull; 2011; 63(5-12):249-54. PubMed ID: 21377176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engaging Stakeholders To Define Feasible and Desirable Agricultural Conservation in Western Lake Erie Watersheds.
    Kalcic MM; Kirchhoff C; Bosch N; Muenich RL; Murray M; Griffith Gardner J; Scavia D
    Environ Sci Technol; 2016 Aug; 50(15):8135-45. PubMed ID: 27336855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduced forms of nitrogen are a driver of non-nitrogen-fixing harmful cyanobacterial blooms and toxicity in Lake Erie.
    Newell SE; Davis TW; Johengen TH; Gossiaux D; Burtner A; Palladino D; McCarthy MJ
    Harmful Algae; 2019 Jan; 81():86-93. PubMed ID: 30638502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. River phosphorus cycling during high flow may constrain Lake Erie cyanobacteria blooms.
    King WM; Curless SE; Hood JM
    Water Res; 2022 Aug; 222():118845. PubMed ID: 35868100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural and human influences on nutrient transport through a small subtropical Chinese estuary.
    Kaiser D; Unger D; Qiu G; Zhou H; Gan H
    Sci Total Environ; 2013 Apr; 450-451():92-107. PubMed ID: 23467180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissolved Reactive Phosphorus Loads to Western Lake Erie: The Hidden Influence of Nanoparticles.
    River M; Richardson CJ
    J Environ Qual; 2019 May; 48(3):645-653. PubMed ID: 31180434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water quality modeling of a prairie river-lake system.
    Hosseini N; Akomeah E; Davis JM; Baulch H; Lindenschmidt KE
    Environ Sci Pollut Res Int; 2018 Nov; 25(31):31190-31204. PubMed ID: 30191525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of temperature on phosphorus flux from anoxic western Lake Erie sediments.
    Gibbons KJ; Bridgeman TB
    Water Res; 2020 Sep; 182():116022. PubMed ID: 32623199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating causes of trends in long-term dissolved reactive phosphorus loads to Lake Erie.
    Daloğlu I; Cho KH; Scavia D
    Environ Sci Technol; 2012 Oct; 46(19):10660-6. PubMed ID: 22962949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term decreases in phosphorus and suspended solids, but not nitrogen, in six upper Mississippi River tributaries, 1991-2014.
    Kreiling RM; Houser JN
    Environ Monit Assess; 2016 Aug; 188(8):454. PubMed ID: 27393194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.