BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 25679454)

  • 1. Nanoparticle-mediated intracellular delivery enables cryopreservation of human adipose-derived stem cells using trehalose as the sole cryoprotectant.
    Rao W; Huang H; Wang H; Zhao S; Dumbleton J; Zhao G; He X
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):5017-28. PubMed ID: 25679454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cold-Responsive Nanoparticle Enables Intracellular Delivery and Rapid Release of Trehalose for Organic-Solvent-Free Cryopreservation.
    Zhang Y; Wang H; Stewart S; Jiang B; Ou W; Zhao G; He X
    Nano Lett; 2019 Dec; 19(12):9051-9061. PubMed ID: 31680526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryopreservation of Human Adipose Tissues and Adipose-Derived Stem Cells with DMSO and/or Trehalose: A Systematic Review.
    Crowley CA; Smith WPW; Seah KTM; Lim SK; Khan WS
    Cells; 2021 Jul; 10(7):. PubMed ID: 34360005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cryopreservation of Human Adipose-Derived Stem Cells in Combination with Trehalose and Reversible Electroporation.
    Dovgan B; Barlič A; Knežević M; Miklavčič D
    J Membr Biol; 2017 Feb; 250(1):1-9. PubMed ID: 27383230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Apatite nanoparticles mediate intracellular delivery of trehalose and increase survival of cryopreserved cells.
    Wang B; Liu G; Balamurugan V; Sui Y; Wang G; Song Y; Chang Q
    Cryobiology; 2019 Feb; 86():103-110. PubMed ID: 30458174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of intracellular and extracellular trehalose as a cryoprotectant of stem cells obtained from umbilical cord blood.
    Motta JP; Paraguassú-Braga FH; Bouzas LF; Porto LC
    Cryobiology; 2014 Jun; 68(3):343-8. PubMed ID: 24769312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trehalose glycopolymers for cryopreservation of tissue-engineered constructs.
    Wang J; Shi X; Xiong M; Tan WS; Cai H
    Cryobiology; 2022 Feb; 104():47-55. PubMed ID: 34800528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cryopreservation of microencapsulated murine mesenchymal stem cells genetically engineered to secrete erythropoietin.
    Gurruchaga H; Ciriza J; Saenz Del Burgo L; Rodriguez-Madoz JR; Santos E; Prosper F; Hernández RM; Orive G; Pedraz JL
    Int J Pharm; 2015 May; 485(1-2):15-24. PubMed ID: 25708005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Apatite nanoparticles strongly improve red blood cell cryopreservation by mediating trehalose delivery via enhanced membrane permeation.
    Stefanic M; Ward K; Tawfik H; Seemann R; Baulin V; Guo Y; Fleury JB; Drouet C
    Biomaterials; 2017 Sep; 140():138-149. PubMed ID: 28649014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular Delivery of Trehalose for Cell Banking.
    Stewart S; He X
    Langmuir; 2019 Jun; 35(23):7414-7422. PubMed ID: 30078320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cryopreservation of amniotic fluid-derived stem cells using natural cryoprotectants and low concentrations of dimethylsulfoxide.
    Seo JM; Sohn MY; Suh JS; Atala A; Yoo JJ; Shon YH
    Cryobiology; 2011 Jun; 62(3):167-73. PubMed ID: 21335000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cryopreservation of human erythrocytes through high intracellular trehalose with membrane stabilization of maltotriose-grafted ε-poly(L-lysine).
    Gao S; Niu Q; Liu X; Zhu C; Chong J; Ren L; Zhu K; Yuan X
    J Mater Chem B; 2022 Jun; 10(23):4452-4462. PubMed ID: 35604178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effect of trehalose on survival rate for 
fat cells after cryopreservation].
    Deng Y; Liu S; Xie H; Tang F; Li M; Chen N
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2017 May; 42(5):507-510. PubMed ID: 28626094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Equilibration Time and Temperature on Murine Spermatogonial Stem Cell Cryopreservation.
    Jung SE; Kim M; Ahn JS; Kim YH; Kim BJ; Yun MH; Auh JH; Ryu BY
    Biopreserv Biobank; 2020 Jun; 18(3):213-221. PubMed ID: 32216643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The search for a useful method for the optimal cryopreservation of adipose aspirates: part I. In vitro study.
    Cui X; Pu LL
    Aesthet Surg J; 2009; 29(3):248-52. PubMed ID: 19608075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The combination of trehalose and glycerol: an effective and non-toxic recipe for cryopreservation of human adipose-derived stem cells.
    Zhang TY; Tan PC; Xie Y; Zhang XJ; Zhang PQ; Gao YM; Zhou SB; Li QF
    Stem Cell Res Ther; 2020 Oct; 11(1):460. PubMed ID: 33129347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comb-like Pseudopeptides Enable Very Rapid and Efficient Intracellular Trehalose Delivery for Enhanced Cryopreservation of Erythrocytes.
    Chen S; Wu L; Ren J; Bemmer V; Zajicek R; Chen R
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):28941-28951. PubMed ID: 32496048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Successful cryopreservation of mouse oocytes by using low concentrations of trehalose and dimethylsulfoxide.
    Eroglu A; Bailey SE; Toner M; Toth TL
    Biol Reprod; 2009 Jan; 80(1):70-8. PubMed ID: 18815355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amphipathic polymer-mediated uptake of trehalose for dimethyl sulfoxide-free human cell cryopreservation.
    Sharp DM; Picken A; Morris TJ; Hewitt CJ; Coopman K; Slater NK
    Cryobiology; 2013 Dec; 67(3):305-11. PubMed ID: 24045066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased cryosurvival of osteosarcoma cells using an amphipathic pH-responsive polymer for trehalose uptake.
    Mercado SA; Slater NK
    Cryobiology; 2016 Oct; 73(2):175-80. PubMed ID: 27497662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.