These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 25679545)

  • 21. Visible-light-driven methane formation from CO
    Rao H; Schmidt LC; Bonin J; Robert M
    Nature; 2017 Aug; 548(7665):74-77. PubMed ID: 28723895
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tale of Two Layered Semiconductor Catalysts toward Artificial Photosynthesis.
    Roy S
    ACS Appl Mater Interfaces; 2020 Aug; 12(34):37811-37833. PubMed ID: 32805975
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Selective CO2 conversion to formate conjugated with H2O oxidation utilizing semiconductor/complex hybrid photocatalysts.
    Sato S; Arai T; Morikawa T; Uemura K; Suzuki TM; Tanaka H; Kajino T
    J Am Chem Soc; 2011 Oct; 133(39):15240-3. PubMed ID: 21899327
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Visible light water splitting using dye-sensitized oxide semiconductors.
    Youngblood WJ; Lee SH; Maeda K; Mallouk TE
    Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Solar light photocatalytic CO2 reduction: general considerations and selected bench-mark photocatalysts.
    Neațu S; Maciá-Agulló JA; Garcia H
    Int J Mol Sci; 2014 Mar; 15(4):5246-62. PubMed ID: 24670477
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct Z-Scheme Heterojunction of SnS
    Guo S; Yang P; Zhao Y; Yu X; Wu Y; Zhang H; Yu B; Han B; George MW; Liu Z
    ChemSusChem; 2020 Dec; 13(23):6278-6283. PubMed ID: 32291955
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Graphene-Based Photocatalysts for Solar-Fuel Generation.
    Xiang Q; Cheng B; Yu J
    Angew Chem Int Ed Engl; 2015 Sep; 54(39):11350-66. PubMed ID: 26079429
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Necessary and sufficient conditions for the successful three-phase photocatalytic reduction of CO
    Teramura K; Tanaka T
    Phys Chem Chem Phys; 2018 Mar; 20(13):8423-8431. PubMed ID: 29542742
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unique Features of the Photocatalytic Reduction of H
    Roy A; Chhetri M; Prasad S; Waghmare UV; Rao CNR
    ACS Appl Mater Interfaces; 2018 Jan; 10(3):2526-2536. PubMed ID: 29278485
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photons to Formate-A Review on Photocatalytic Reduction of CO
    Pan H; Heagy MD
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33291520
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Monolithic cells for solar fuels.
    Rongé J; Bosserez T; Martel D; Nervi C; Boarino L; Taulelle F; Decher G; Bordiga S; Martens JA
    Chem Soc Rev; 2014 Dec; 43(23):7963-81. PubMed ID: 24526085
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Perspective: Photocatalytic reduction of CO
    Peng C; Reid G; Wang H; Hu P
    J Chem Phys; 2017 Jul; 147(3):030901. PubMed ID: 28734289
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photocatalytic CO
    Rehman ZU; Bilal M; Hou J; Butt FK; Ahmad J; Ali S; Hussain A
    Molecules; 2022 Mar; 27(7):. PubMed ID: 35408467
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photocatalytic reduction of CO2 into hydrocarbon solar fuels over g-C3N4-Pt nanocomposite photocatalysts.
    Yu J; Wang K; Xiao W; Cheng B
    Phys Chem Chem Phys; 2014 Jun; 16(23):11492-501. PubMed ID: 24801641
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metal-organic frameworks for artificial photosynthesis and photocatalysis.
    Zhang T; Lin W
    Chem Soc Rev; 2014 Aug; 43(16):5982-93. PubMed ID: 24769551
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Challenges and prospects in the selective photoreduction of CO
    Behera A; Kar AK; Srivastava R
    Mater Horiz; 2022 Feb; 9(2):607-639. PubMed ID: 34897343
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photocatalytic reduction of CO2 and protons using water as an electron donor over potassium tantalate nanoflakes.
    Li K; Handoko AD; Khraisheh M; Tang J
    Nanoscale; 2014 Aug; 6(16):9767-73. PubMed ID: 25007379
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Accumulative charge separation for solar fuels production: coupling light-induced single electron transfer to multielectron catalysis.
    Hammarström L
    Acc Chem Res; 2015 Mar; 48(3):840-50. PubMed ID: 25675365
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Elemental Boron for Efficient Carbon Dioxide Reduction under Light Irradiation.
    Liu G; Meng X; Zhang H; Zhao G; Pang H; Wang T; Li P; Kako T; Ye J
    Angew Chem Int Ed Engl; 2017 May; 56(20):5570-5574. PubMed ID: 28338279
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanoarchitectonics of Metal-Free Porous Polyketone as Photocatalytic Assemblies for Artificial Photosynthesis.
    Mondal S; Powar NS; Paul R; Kwon H; Das N; Wong BM; In SI; Mondal J
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):771-783. PubMed ID: 34962379
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.