These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1113 related articles for article (PubMed ID: 25679581)

  • 1. Quantum critical behavior of the quantum Ising model on fractal lattices.
    Yi H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012118. PubMed ID: 25679581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Critical behavior of the quantum Ising model on a fractal structure.
    Yi H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):014105. PubMed ID: 23944595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multipartite entanglement, quantum coherence, and quantum criticality in triangular and Sierpiński fractal lattices.
    Cheng JQ; Xu JB
    Phys Rev E; 2018 Jun; 97(6-1):062134. PubMed ID: 30011478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stationary and dynamic critical behavior of the contact process on the Sierpinski carpet.
    Argolo C; Barros P; Tomé T; Gleria I; Lyra ML
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052137. PubMed ID: 26066149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cluster Monte Carlo simulation of the transverse Ising model.
    Blöte HW; Deng Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):066110. PubMed ID: 12513350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absorbing phase transition in conserved lattice gas model on fractal lattices.
    Lee SB; Kim YN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031137. PubMed ID: 17930229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum phase transition of the transverse-field quantum Ising model on scale-free networks.
    Yi H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012146. PubMed ID: 25679609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Majority-vote model on hyperbolic lattices.
    Wu ZX; Holme P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011133. PubMed ID: 20365349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First- and second-order quantum phase transitions of a q-state Potts model in fractal lattices.
    Yi H
    Phys Rev E; 2017 Dec; 96(6-1):062105. PubMed ID: 29347356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Universality split in absorbing phase transition with conserved field on fractal lattices.
    Lee SG; Lee SB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):041122. PubMed ID: 18517593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short-time dynamics of an ising system on fractal structures.
    Zheng GP; Li M
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Nov; 62(5 Pt A):6253-9. PubMed ID: 11101957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Critical behavior of a three-dimensional random-bond Ising model using finite-time scaling with extensive Monte Carlo renormalization-group method.
    Xiong W; Zhong F; Yuan W; Fan S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051132. PubMed ID: 20866210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Critical behavior of the Ising model on random fractals.
    Monceau P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 1):051132. PubMed ID: 22181393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Universality of the Ising and the S=1 model on Archimedean lattices: a Monte Carlo determination.
    Malakis A; Gulpinar G; Karaaslan Y; Papakonstantinou T; Aslan G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031146. PubMed ID: 22587077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elastic properties of Sierpinski-like carpets: finite-element-based simulation.
    Oshmyan VG; Patlazhan SA; Timan SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056108. PubMed ID: 11736015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scaling of Hamiltonian walks on fractal lattices.
    Elezović-Hadzić S; Marcetić D; Maletić S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 1):011107. PubMed ID: 17677410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Critical behavior of an Ising system on the Sierpinski carpet: a short-time dynamics study.
    Bab MA; Fabricius G; Albano EV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036139. PubMed ID: 15903525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Damage-spreading dynamic scaling for the ising model on the sierpinski gasket fractal.
    Argolo C; Mariz A; Lyra M; Miyazima S
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Feb; 61(2):1227-31. PubMed ID: 11046399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discrete scale invariance effects in the nonequilibrium critical behavior of the Ising magnet on a fractal substrate.
    Bab MA; Fabricius G; Albano EV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 1):041123. PubMed ID: 17155038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Abelian Manna model on two fractal lattices.
    Huynh HN; Chew LY; Pruessner G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):042103. PubMed ID: 21230332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 56.