These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
750 related articles for article (PubMed ID: 25679595)
1. Block renormalization study on the nonequilibrium chiral Ising model. Kim M; Park SC; Noh JD Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012132. PubMed ID: 25679595 [TBL] [Abstract][Full Text] [Related]
2. Coarsening dynamics of nonequilibrium chiral Ising models. Kim M; Park SC; Noh JD Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012129. PubMed ID: 23410305 [TBL] [Abstract][Full Text] [Related]
3. Nonequilibrium critical dynamics of the triangular antiferromagnetic Ising model. Kim E; Kim B; Lee SJ Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 2):066127. PubMed ID: 14754289 [TBL] [Abstract][Full Text] [Related]
4. Nonequilibrium dynamics of random field Ising spin chains: exact results via real space renormalization group. Fisher DS; Le Doussal P; Monthus C Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Dec; 64(6 Pt 2):066107. PubMed ID: 11736236 [TBL] [Abstract][Full Text] [Related]
5. Critical behavior of a three-dimensional random-bond Ising model using finite-time scaling with extensive Monte Carlo renormalization-group method. Xiong W; Zhong F; Yuan W; Fan S Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051132. PubMed ID: 20866210 [TBL] [Abstract][Full Text] [Related]
6. Nonequilibrium critical dynamics of the relaxational models C and D. Akkineni VK; Täuber UC Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 2):036113. PubMed ID: 15089367 [TBL] [Abstract][Full Text] [Related]
7. Master crossover behavior of parachor correlations for one-component fluids. Garrabos Y; Palencia F; Lecoutre C; Broseta D; Le Neindre B Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 1):061109. PubMed ID: 18233816 [TBL] [Abstract][Full Text] [Related]
8. Time-dependent Monte Carlo simulations of critical and Lifshitz points of the axial-next-nearest-neighbor Ising model. da Silva R; Alves N; Drugowich de Felício JR Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012131. PubMed ID: 23410307 [TBL] [Abstract][Full Text] [Related]
9. Monte Carlo renormalization: the triangular Ising model as a test case. Guo W; Blöte HW; Ren Z Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046126. PubMed ID: 15903745 [TBL] [Abstract][Full Text] [Related]
10. Nonequilibrium critical relaxation of the order parameter and energy in the two-dimensional ferromagnetic Potts model. Nam K; Kim B; Lee SJ Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 2):056104. PubMed ID: 18643133 [TBL] [Abstract][Full Text] [Related]
11. Constrained spin-dynamics description of random walks on hierarchical scale-free networks. Noh JD; Rieger H Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 2):036111. PubMed ID: 15089365 [TBL] [Abstract][Full Text] [Related]
12. Dynamic scaling in the two-dimensional Ising spin glass with normal-distributed couplings. Xu N; Wu KH; Rubin SJ; Kao YJ; Sandvik AW Phys Rev E; 2017 Nov; 96(5-1):052102. PubMed ID: 29347699 [TBL] [Abstract][Full Text] [Related]
13. Probing criticality with linearly varying external fields: Renormalization group theory of nonequilibrium critical dynamics under driving. Zhong F Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 2):047102. PubMed ID: 16711952 [TBL] [Abstract][Full Text] [Related]
14. Nonequilibrium relaxations within the ground-state manifold in the antiferromagnetic Ising model on a triangular lattice. Kim E; Lee SJ; Kim B Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 1):021106. PubMed ID: 17358312 [TBL] [Abstract][Full Text] [Related]
15. Fractality in persistence decay and domain growth during ferromagnetic ordering: Dependence upon initial correlation. Chakraborty S; Das SK Phys Rev E; 2016 Mar; 93(3):032139. PubMed ID: 27078324 [TBL] [Abstract][Full Text] [Related]
16. Universal dynamic scaling in three-dimensional Ising spin glasses. Liu CW; Polkovnikov A; Sandvik AW; Young AP Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022128. PubMed ID: 26382365 [TBL] [Abstract][Full Text] [Related]
17. Nonequilibrium behaviors of the three-dimensional Heisenberg model in the Swendsen-Wang algorithm. Nonomura Y; Tomita Y Phys Rev E; 2016 Jan; 93(1):012101. PubMed ID: 26871018 [TBL] [Abstract][Full Text] [Related]
18. Glassy dynamics in the asymmetrically constrained kinetic Ising chain. Sollich P; Evans MR Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 1):031504. PubMed ID: 14524774 [TBL] [Abstract][Full Text] [Related]
19. Conjugate field and fluctuation-dissipation relation for the dynamic phase transition in the two-dimensional kinetic Ising model. Robb DT; Rikvold PA; Berger A; Novotny MA Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 1):021124. PubMed ID: 17930023 [TBL] [Abstract][Full Text] [Related]
20. Monte Carlo study of anisotropic scaling generated by disorder. Vasilyev O; Berche B; Dudka M; Holovatch Y Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042118. PubMed ID: 26565179 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]