These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

497 related articles for article (PubMed ID: 25679613)

  • 1. Flow regime transitions in dense non-Brownian suspensions: rheology, microstructural characterization, and constitutive modeling.
    Ness C; Sun J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012201. PubMed ID: 25679613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shear thickening regimes of dense non-Brownian suspensions.
    Ness C; Sun J
    Soft Matter; 2016 Jan; 12(3):914-24. PubMed ID: 26555249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rheology of cohesive granular materials across multiple dense-flow regimes.
    Gu Y; Chialvo S; Sundaresan S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032206. PubMed ID: 25314436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transition from the viscous to inertial regime in dense suspensions.
    Trulsson M; Andreotti B; Claudin P
    Phys Rev Lett; 2012 Sep; 109(11):118305. PubMed ID: 23005688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unifying suspension and granular rheology.
    Boyer F; Guazzelli É; Pouliquen O
    Phys Rev Lett; 2011 Oct; 107(18):188301. PubMed ID: 22107679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regime transitions of granular flow in a shear cell: a micromechanical study.
    Wang X; Zhu HP; Luding S; Yu AB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032203. PubMed ID: 24125257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of particle stiffness on contact dynamics and rheology in a dense granular flow.
    Bharathraj S; Kumaran V
    Phys Rev E; 2018 Jan; 97(1-1):012902. PubMed ID: 29448432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling shear-induced particle ordering and deformation in a dense soft particle suspension.
    Liao CT; Wu YF; Chien W; Huang JR; Chen YL
    J Phys Condens Matter; 2017 Nov; 29(43):435101. PubMed ID: 28786815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shear flow of non-Brownian rod-sphere mixtures near jamming.
    Anzivino C; Ness C; Moussa AS; Zaccone A
    Phys Rev E; 2024 Apr; 109(4):L042601. PubMed ID: 38755845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Local shear stress and its correlation with local volume fraction in concentrated non-Brownian suspensions: lattice Boltzmann simulation.
    Lee YK; Ahn KH; Lee SJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062317. PubMed ID: 25615103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rheophysics of dense granular materials: discrete simulation of plane shear flows.
    da Cruz F; Emam S; Prochnow M; Roux JN; Chevoir F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):021309. PubMed ID: 16196558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microscopic Origin of Frictional Rheology in Dense Suspensions: Correlations in Force Space.
    Thomas JE; Ramola K; Singh A; Mari R; Morris JF; Chakraborty B
    Phys Rev Lett; 2018 Sep; 121(12):128002. PubMed ID: 30296153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of interparticle friction and particle-scale elasticity in the shear-strength mechanism of three-dimensional granular media.
    Antony SJ; Kruyt NP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):031308. PubMed ID: 19391936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rheology of Dense Suspensions under Shear Rotation.
    Blanc F; Peters F; Gillissen JJJ; Cates ME; Bosio S; Benarroche C; Mari R
    Phys Rev Lett; 2023 Mar; 130(11):118202. PubMed ID: 37001073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ordering transition of non-Brownian suspensions in confined steady shear flow.
    Yeo K; Maxey MR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051502. PubMed ID: 20866230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microscopic mechanism for shear thickening of non-Brownian suspensions.
    Fernandez N; Mani R; Rinaldi D; Kadau D; Mosquet M; Lombois-Burger H; Cayer-Barrioz J; Herrmann HJ; Spencer ND; Isa L
    Phys Rev Lett; 2013 Sep; 111(10):108301. PubMed ID: 25166716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laminar, turbulent, and inertial shear-thickening regimes in channel flow of neutrally buoyant particle suspensions.
    Lashgari I; Picano F; Breugem WP; Brandt L
    Phys Rev Lett; 2014 Dec; 113(25):254502. PubMed ID: 25554885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bridging the rheology of granular flows in three regimes.
    Chialvo S; Sun J; Sundaresan S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021305. PubMed ID: 22463200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shear-driven flow of athermal, frictionless, spherocylinder suspensions in two dimensions: Stress, jamming, and contacts.
    Marschall TA; Teitel S
    Phys Rev E; 2019 Sep; 100(3-1):032906. PubMed ID: 31639991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rheology of three-phase suspensions determined via dam-break experiments.
    Birnbaum J; Lev E; Llewellin EW
    Proc Math Phys Eng Sci; 2021 Oct; 477(2254):20210394. PubMed ID: 35601084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.