These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 25679691)

  • 1. Frequency adjustment and synchrony in networks of delayed pulse-coupled oscillators.
    Nishimura J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012916. PubMed ID: 25679691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probabilistic convergence guarantees for type-II pulse-coupled oscillators.
    Nishimura J; Friedman EJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):025201. PubMed ID: 23005815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust convergence in pulse-coupled oscillators with delays.
    Nishimura J; Friedman EJ
    Phys Rev Lett; 2011 May; 106(19):194101. PubMed ID: 21668162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Existence and Stability Criteria for Global Synchrony and for Synchrony in two Alternating Clusters of Pulse-Coupled Oscillators Updated to Include Conduction Delays.
    Vedururu Srinivas A; Canavier CC
    bioRxiv; 2024 Aug; ():. PubMed ID: 38260324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of node-degree correlation on synchronization of identical pulse-coupled oscillators.
    LaMar MD; Smith GD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046206. PubMed ID: 20481806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synchronization of pulse-coupled oscillators with a refractory period and frequency distribution for a wireless sensor network.
    Konishi K; Kokame H
    Chaos; 2008 Sep; 18(3):033132. PubMed ID: 19045470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How synaptic weights determine stability of synchrony in networks of pulse-coupled excitatory and inhibitory oscillators.
    Kriener B
    Chaos; 2012 Sep; 22(3):033143. PubMed ID: 23020482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Globally attracting synchrony in a network of oscillators with all-to-all inhibitory pulse coupling.
    Canavier CC; Tikidji-Hamburyan RA
    Phys Rev E; 2017 Mar; 95(3-1):032215. PubMed ID: 28415236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Topological speed limits to network synchronization.
    Timme M; Wolf F; Geisel T
    Phys Rev Lett; 2004 Feb; 92(7):074101. PubMed ID: 14995853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Onset of synchronization in complex networks of noisy oscillators.
    Sonnenschein B; Schimansky-Geier L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051116. PubMed ID: 23004712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cross-frequency synchronization of oscillators with time-delayed coupling.
    Klinshov VV; Shchapin DS; Nekorkin VI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042923. PubMed ID: 25375583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synchronization as Aggregation: Cluster Kinetics of Pulse-Coupled Oscillators.
    O'Keeffe KP; Krapivsky PL; Strogatz SH
    Phys Rev Lett; 2015 Aug; 115(6):064101. PubMed ID: 26296117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase transition in crowd synchrony of delay-coupled multilayer laser networks.
    Cohen E; Rosenbluh M; Kanter I
    Opt Express; 2012 Aug; 20(18):19683-9. PubMed ID: 23037020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synchronization states and multistability in a ring of periodic oscillators: experimentally variable coupling delays.
    Williams CR; Sorrentino F; Murphy TE; Roy R
    Chaos; 2013 Dec; 23(4):043117. PubMed ID: 24387556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Statistical analysis of the pulse-coupled synchronization strategy for wireless sensor networks.
    Wang Y; Núñez F; Doyle FJ
    IEEE Trans Signal Process; 2013 Jul; 61(21):. PubMed ID: 24324322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Delayed feedback control of synchronization in weakly coupled oscillator networks.
    Novičenko V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022919. PubMed ID: 26382488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of phase synchronization of coupled chaotic oscillators with empirical mode decomposition.
    Goska A; Krawiecki A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046217. PubMed ID: 17155163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coexistence of regular and irregular dynamics in complex networks of pulse-coupled oscillators.
    Timme M; Wolf F; Geisel T
    Phys Rev Lett; 2002 Dec; 89(25):258701. PubMed ID: 12484926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal synchronization in pulse-coupled oscillator networks using reinforcement learning.
    Chen Z; Anglea T; Zhang Y; Wang Y
    PNAS Nexus; 2023 Apr; 2(4):pgad102. PubMed ID: 37077885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synchronization dynamics in the presence of coupling delays and phase shifts.
    Jörg DJ; Morelli LG; Ares S; Jülicher F
    Phys Rev Lett; 2014 May; 112(17):174101. PubMed ID: 24836248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.