These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Combined pressure and electrical-resistivity measurements of warm dense aluminum and titanium plasmas. Renaudin P; Blancard C; Faussurier G; Noiret P Phys Rev Lett; 2002 May; 88(21):215001. PubMed ID: 12059478 [TBL] [Abstract][Full Text] [Related]
8. Pressure in warm and hot dense matter using the average-atom model. Faussurier G; Blancard C Phys Rev E; 2019 May; 99(5-1):053201. PubMed ID: 31212555 [TBL] [Abstract][Full Text] [Related]
9. Average-atom treatment of relaxation time in x-ray Thomson scattering from warm dense matter. Johnson WR; Nilsen J Phys Rev E; 2016 Mar; 93(3):033205. PubMed ID: 27078473 [TBL] [Abstract][Full Text] [Related]
10. Aluminum equation-of-state data in the warm dense matter regime. Renaudin P; Blancard C; Clérouin J; Faussurier G; Noiret P; Recoules V Phys Rev Lett; 2003 Aug; 91(7):075002. PubMed ID: 12935025 [TBL] [Abstract][Full Text] [Related]
11. First-principles calculations on the intrinsic resistivity of realistic metals: a case study of monolayer V Zhang B; Gong W Phys Chem Chem Phys; 2024 Jan; 26(3):1741-1748. PubMed ID: 38165490 [TBL] [Abstract][Full Text] [Related]
12. Average-atom model combined with the hypernetted chain approximation applied to warm dense matter. Hou Y; Bredow R; Yuan J; Redmer R Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033114. PubMed ID: 25871231 [TBL] [Abstract][Full Text] [Related]
13. Predictions of x-ray scattering spectra for warm dense matter. Souza AN; Perkins DJ; Starrett CE; Saumon D; Hansen SB Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):023108. PubMed ID: 25353587 [TBL] [Abstract][Full Text] [Related]
14. Comment on "Isochoric, isobaric, and ultrafast conductivities of aluminum, lithium, and carbon in the warm dense matter regime". Witte BBL; Röpke G; Neumayer P; French M; Sperling P; Recoules V; Glenzer SH; Redmer R Phys Rev E; 2019 Apr; 99(4-2):047201. PubMed ID: 31108609 [TBL] [Abstract][Full Text] [Related]
15. Quantum molecular dynamics study of expanded beryllium: evolution from warm dense matter to atomic fluid. Li D; Liu H; Zeng S; Wang C; Wu Z; Zhang P; Yan J Sci Rep; 2014 Jul; 4():5898. PubMed ID: 25081816 [TBL] [Abstract][Full Text] [Related]
16. Enhanced relativistic-electron-beam energy loss in warm dense aluminum. Vaisseau X; Debayle A; Honrubia JJ; Hulin S; Morace A; Nicolaï P; Sawada H; Vauzour B; Batani D; Beg FN; Davies JR; Fedosejevs R; Gray RJ; Kemp GE; Kerr S; Li K; Link A; McKenna P; McLean HS; Mo M; Patel PK; Park J; Peebles J; Rhee YJ; Sorokovikova A; Tikhonchuk VT; Volpe L; Wei M; Santos JJ Phys Rev Lett; 2015 Mar; 114(9):095004. PubMed ID: 25793822 [TBL] [Abstract][Full Text] [Related]
17. Electronic and ionic structures of warm and hot dense matter. Starrett CE; Saumon D Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013104. PubMed ID: 23410443 [TBL] [Abstract][Full Text] [Related]
18. Consistent approach for electrical resistivity within Ziman's theory from solid state to hot dense plasma: Application to aluminum. Wetta N; Pain JC Phys Rev E; 2020 Nov; 102(5-1):053209. PubMed ID: 33327124 [TBL] [Abstract][Full Text] [Related]
19. Electrical conductivity for warm, dense aluminum plasmas and liquids. Desjarlais MP; Kress JD; Collins LA Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 2):025401. PubMed ID: 12241227 [TBL] [Abstract][Full Text] [Related]
20. Viscosity and mutual diffusion of deuterium-tritium mixtures in the warm-dense-matter regime. Kress JD; Cohen JS; Horner DA; Lambert F; Collins LA Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036404. PubMed ID: 21230193 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]