These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 25679753)
1. Conversion of methane to methanol on copper-containing small-pore zeolites and zeotypes. Wulfers MJ; Teketel S; Ipek B; Lobo RF Chem Commun (Camb); 2015 Mar; 51(21):4447-50. PubMed ID: 25679753 [TBL] [Abstract][Full Text] [Related]
2. Catalytic conversion of methane to methanol on Cu-SSZ-13 using N Ipek B; Lobo RF Chem Commun (Camb); 2016 Nov; 52(91):13401-13404. PubMed ID: 27790665 [TBL] [Abstract][Full Text] [Related]
3. Selective oxidation of methane by the bis(mu-oxo)dicopper core stabilized on ZSM-5 and mordenite zeolites. Groothaert MH; Smeets PJ; Sels BF; Jacobs PA; Schoonheydt RA J Am Chem Soc; 2005 Feb; 127(5):1394-5. PubMed ID: 15686370 [TBL] [Abstract][Full Text] [Related]
4. Continuous Partial Oxidation of Methane to Methanol Catalyzed by Diffusion-Paired Copper Dimers in Copper-Exchanged Zeolites. Dinh KT; Sullivan MM; Narsimhan K; Serna P; Meyer RJ; Dincă M; Román-Leshkov Y J Am Chem Soc; 2019 Jul; 141(29):11641-11650. PubMed ID: 31306002 [TBL] [Abstract][Full Text] [Related]
5. A comparison of copper and acid site zeolites for the production of nitric oxide for biomedical applications. Russell SE; González Carballo JM; Orellana-Tavra C; Fairen-Jimenez D; Morris RE Dalton Trans; 2017 Mar; 46(12):3915-3920. PubMed ID: 28265629 [TBL] [Abstract][Full Text] [Related]
6. Economical way to synthesize SSZ-13 with abundant ion-exchanged Cu+ for an extraordinary performance in selective catalytic reduction (SCR) of NOx by ammonia. Chen B; Xu R; Zhang R; Liu N Environ Sci Technol; 2014 Dec; 48(23):13909-16. PubMed ID: 25365767 [TBL] [Abstract][Full Text] [Related]
7. Methane to acetic acid over Cu-exchanged zeolites: mechanistic insights from a site-specific carbonylation reaction. Narsimhan K; Michaelis VK; Mathies G; Gunther WR; Griffin RG; Román-Leshkov Y J Am Chem Soc; 2015 Feb; 137(5):1825-32. PubMed ID: 25562431 [TBL] [Abstract][Full Text] [Related]
8. Exploring the Impact of Active Site Structure on the Conversion of Methane to Methanol in Cu-Exchanged Zeolites. Göltl F; Bhandari S; Lebrón-Rodríguez EA; Gold JI; Hutton DJ; Zones SI; Hermans I; Dumesic JA; Mavrikakis M Angew Chem Int Ed Engl; 2024 Jun; 63(23):e202403179. PubMed ID: 38574295 [TBL] [Abstract][Full Text] [Related]
9. Correlation of the changes in the framework and active Cu sites for typical Cu/CHA zeolites (SSZ-13 and SAPO-34) during hydrothermal aging. Su W; Li Z; Peng Y; Li J Phys Chem Chem Phys; 2015 Nov; 17(43):29142-9. PubMed ID: 26462874 [TBL] [Abstract][Full Text] [Related]
10. The Effect of the Active-Site Structure on the Activity of Copper Mordenite in the Aerobic and Anaerobic Conversion of Methane into Methanol. Sushkevich VL; Palagin D; van Bokhoven JA Angew Chem Int Ed Engl; 2018 Jul; 57(29):8906-8910. PubMed ID: 29756661 [TBL] [Abstract][Full Text] [Related]
11. Catalytic conversion of methane to methanol using Cu-zeolites. Alayon EM; Nachtegaal M; Ranocchiari M; van Bokhoven JA Chimia (Aarau); 2012; 66(9):668-74. PubMed ID: 23211724 [TBL] [Abstract][Full Text] [Related]
12. Water Is the Oxygen Source for Methanol Produced in Partial Oxidation of Methane in a Flow Reactor over Cu-SSZ-13. Koishybay A; Shantz DF J Am Chem Soc; 2020 Jul; 142(28):11962-11966. PubMed ID: 32597653 [TBL] [Abstract][Full Text] [Related]
13. Further Studies on How the Nature of Zeolite Cavities That Are Bounded by Small Pores Influences the Conversion of Methanol to Light Olefins. Kang JH; Walter R; Xie D; Davis T; Chen CY; Davis ME; Zones SI Chemphyschem; 2018 Feb; 19(4):412-419. PubMed ID: 29211929 [TBL] [Abstract][Full Text] [Related]
14. The Nuclearity of the Active Site for Methane to Methanol Conversion in Cu-Mordenite: A Quantitative Assessment. Pappas DK; Martini A; Dyballa M; Kvande K; Teketel S; Lomachenko KA; Baran R; Glatzel P; Arstad B; Berlier G; Lamberti C; Bordiga S; Olsbye U; Svelle S; Beato P; Borfecchia E J Am Chem Soc; 2018 Nov; 140(45):15270-15278. PubMed ID: 30346154 [TBL] [Abstract][Full Text] [Related]
15. Direct catalytic conversion of methane to methanol in an aqueous medium by using copper-promoted Fe-ZSM-5. Hammond C; Forde MM; Ab Rahim MH; Thetford A; He Q; Jenkins RL; Dimitratos N; Lopez-Sanchez JA; Dummer NF; Murphy DM; Carley AF; Taylor SH; Willock DJ; Stangland EE; Kang J; Hagen H; Kiely CJ; Hutchings GJ Angew Chem Int Ed Engl; 2012 May; 51(21):5129-33. PubMed ID: 22488717 [No Abstract] [Full Text] [Related]
16. Tuning Copper Active Site Composition in Cu-MOR through Co-Cation Modification for Methane Activation. Plessers D; Heyer AJ; Rhoda HM; Bols ML; Solomon EI; Schoonheydt RA; Sels BF ACS Catal; 2023 Feb; 13(3):1906-1915. PubMed ID: 37377676 [TBL] [Abstract][Full Text] [Related]
17. Recent Insights into Cu-Based Catalytic Sites for the Direct Conversion of Methane to Methanol. Mao M; Liu L; Liu Z Molecules; 2022 Oct; 27(21):. PubMed ID: 36363972 [TBL] [Abstract][Full Text] [Related]
18. Conversion of methane to methanol at the mononuclear and dinuclear copper sites of particulate methane monooxygenase (pMMO): a DFT and QM/MM study. Yoshizawa K; Shiota Y J Am Chem Soc; 2006 Aug; 128(30):9873-81. PubMed ID: 16866545 [TBL] [Abstract][Full Text] [Related]
19. Methane Over-Oxidation by Extra-Framework Copper-Oxo Active Sites of Copper-Exchanged Zeolites: Crucial Role of Traps for the Separated Methyl Group. Adeyiga O; Odoh SO Chemphyschem; 2021 Jun; 22(11):1101-1109. PubMed ID: 33786957 [TBL] [Abstract][Full Text] [Related]
20. Recent Progress in Direct Conversion of Methane to Methanol Over Copper-Exchanged Zeolites. Park MB; Park ED; Ahn WS Front Chem; 2019; 7():514. PubMed ID: 31380355 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]