These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
562 related articles for article (PubMed ID: 25679813)
1. Discovery of transcription factors and regulatory regions driving in vivo tumor development by ATAC-seq and FAIRE-seq open chromatin profiling. Davie K; Jacobs J; Atkins M; Potier D; Christiaens V; Halder G; Aerts S PLoS Genet; 2015 Feb; 11(2):e1004994. PubMed ID: 25679813 [TBL] [Abstract][Full Text] [Related]
2. Defining Regulatory Elements in the Human Genome Using Nucleosome Occupancy and Methylome Sequencing (NOMe-Seq). Rhie SK; Schreiner S; Farnham PJ Methods Mol Biol; 2018; 1766():209-229. PubMed ID: 29605855 [TBL] [Abstract][Full Text] [Related]
3. Identification of genomic enhancers through spatial integration of single-cell transcriptomics and epigenomics. Bravo González-Blas C; Quan XJ; Duran-Romaña R; Taskiran II; Koldere D; Davie K; Christiaens V; Makhzami S; Hulselmans G; de Waegeneer M; Mauduit D; Poovathingal S; Aibar S; Aerts S Mol Syst Biol; 2020 May; 16(5):e9438. PubMed ID: 32431014 [TBL] [Abstract][Full Text] [Related]
4. Profiling of chromatin accessibility and identification of general cis-regulatory mechanisms that control two ocular lens differentiation pathways. Zhao Y; Zheng D; Cvekl A Epigenetics Chromatin; 2019 May; 12(1):27. PubMed ID: 31053165 [TBL] [Abstract][Full Text] [Related]
5. Global Mapping of Open Chromatin Regulatory Elements by Formaldehyde-Assisted Isolation of Regulatory Elements Followed by Sequencing (FAIRE-seq). Bianco S; Rodrigue S; Murphy BD; Gévry N Methods Mol Biol; 2015; 1334():261-72. PubMed ID: 26404156 [TBL] [Abstract][Full Text] [Related]
6. Chromatin profiling of Drosophila CNS subpopulations identifies active transcriptional enhancers. Pearson JC; McKay DJ; Lieb JD; Crews ST Development; 2016 Oct; 143(20):3723-3732. PubMed ID: 27802137 [TBL] [Abstract][Full Text] [Related]
7. Chromatin insulators and long-distance interactions in Drosophila. Kyrchanova O; Georgiev P FEBS Lett; 2014 Jan; 588(1):8-14. PubMed ID: 24211836 [TBL] [Abstract][Full Text] [Related]
8. Genome-Wide Mapping Targets of the Metazoan Chromatin Remodeling Factor NURF Reveals Nucleosome Remodeling at Enhancers, Core Promoters and Gene Insulators. Kwon SY; Grisan V; Jang B; Herbert J; Badenhorst P PLoS Genet; 2016 Apr; 12(4):e1005969. PubMed ID: 27046080 [TBL] [Abstract][Full Text] [Related]
9. Genome-wide expression profiling in the Drosophila eye reveals unexpected repression of notch signaling by the JAK/STAT pathway. Flaherty MS; Zavadil J; Ekas LA; Bach EA Dev Dyn; 2009 Sep; 238(9):2235-53. PubMed ID: 19504457 [TBL] [Abstract][Full Text] [Related]
10. Global mapping of cell type-specific open chromatin by FAIRE-seq reveals the regulatory role of the NFI family in adipocyte differentiation. Waki H; Nakamura M; Yamauchi T; Wakabayashi K; Yu J; Hirose-Yotsuya L; Take K; Sun W; Iwabu M; Okada-Iwabu M; Fujita T; Aoyama T; Tsutsumi S; Ueki K; Kodama T; Sakai J; Aburatani H; Kadowaki T PLoS Genet; 2011 Oct; 7(10):e1002311. PubMed ID: 22028663 [TBL] [Abstract][Full Text] [Related]
11. Genomic methods in profiling DNA accessibility and factor localization. Klein DC; Hainer SJ Chromosome Res; 2020 Mar; 28(1):69-85. PubMed ID: 31776829 [TBL] [Abstract][Full Text] [Related]
12. An efficient approach to isolate STAT regulated enhancers uncovers STAT92E fundamental role in Drosophila tracheal development. Sotillos S; Espinosa-Vázquez JM; Foglia F; Hu N; Hombría JC Dev Biol; 2010 Apr; 340(2):571-82. PubMed ID: 20171201 [TBL] [Abstract][Full Text] [Related]
13. Harnessing changes in open chromatin determined by ATAC-seq to generate insulin-responsive reporter constructs. Merrill CB; Montgomery AB; Pabon MA; Shabalin AA; Rodan AR; Rothenfluh A BMC Genomics; 2022 May; 23(1):399. PubMed ID: 35614386 [TBL] [Abstract][Full Text] [Related]
14. Effective blocking of the white enhancer requires cooperation between two main mechanisms suggested for the insulator function. Kyrchanova O; Maksimenko O; Stakhov V; Ivlieva T; Parshikov A; Studitsky VM; Georgiev P PLoS Genet; 2013; 9(7):e1003606. PubMed ID: 23861668 [TBL] [Abstract][Full Text] [Related]
15. Optimization of ATAC-seq in wheat seedling roots using INTACT-isolated nuclei. Debernardi JM; Burguener G; Bubb K; Liu Q; Queitsch C; Dubcovsky J BMC Plant Biol; 2023 May; 23(1):270. PubMed ID: 37211599 [TBL] [Abstract][Full Text] [Related]
16. Dissecting the Epigenome Driving Drug Resistance by ATAC-Seq. de Nicola F; Corleone G; Goeman F Methods Mol Biol; 2022; 2535():171-185. PubMed ID: 35867231 [TBL] [Abstract][Full Text] [Related]
17. The transcription factor reservoir and chromatin landscape in activated plasmacytoid dendritic cells. Mann-Nüttel R; Ali S; Petzsch P; Köhrer K; Alferink J; Scheu S BMC Genom Data; 2021 Sep; 22(1):37. PubMed ID: 34544361 [TBL] [Abstract][Full Text] [Related]
18. Definition of regulatory elements and transcription factors controlling porcine immune cell gene expression at single cell resolution using single nucleus ATAC-seq. Yang P; Corbett R; Daharsh L; Uribe JH; Byrne KA; Loving CL; Tuggle C Genomics; 2024 Nov; 116(6):110944. PubMed ID: 39326643 [TBL] [Abstract][Full Text] [Related]
19. High-throughput cis-regulatory element discovery in the vector mosquito Aedes aegypti. Behura SK; Sarro J; Li P; Mysore K; Severson DW; Emrich SJ; Duman-Scheel M BMC Genomics; 2016 May; 17():341. PubMed ID: 27161480 [TBL] [Abstract][Full Text] [Related]