These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 25679890)

  • 1. Observation of generalized optomechanical coupling and cooling on cavity resonance.
    Sawadsky A; Kaufer H; Nia RM; Tarabrin SP; Khalili FY; Hammerer K; Schnabel R
    Phys Rev Lett; 2015 Jan; 114(4):043601. PubMed ID: 25679890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiation-pressure cooling and optomechanical instability of a micromirror.
    Arcizet O; Cohadon PF; Briant T; Pinard M; Heidmann A
    Nature; 2006 Nov; 444(7115):71-4. PubMed ID: 17080085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissipative optomechanics in a Michelson-Sagnac interferometer.
    Xuereb A; Schnabel R; Hammerer K
    Phys Rev Lett; 2011 Nov; 107(21):213604. PubMed ID: 22181881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large cooperativity and microkelvin cooling with a three-dimensional optomechanical cavity.
    Yuan M; Singh V; Blanter YM; Steele GA
    Nat Commun; 2015 Oct; 6():8491. PubMed ID: 26450772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane.
    Thompson JD; Zwickl BM; Jayich AM; Marquardt F; Girvin SM; Harris JG
    Nature; 2008 Mar; 452(7183):72-5. PubMed ID: 18322530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ground-state cooling of mechanical oscillator via quadratic optomechanical coupling with two coupled optical cavities.
    Yang JY; Wang DY; Bai CH; Guan SY; Gao XY; Zhu AD; Wang HF
    Opt Express; 2019 Aug; 27(16):22855-22867. PubMed ID: 31510570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear Dynamics and Strong Cavity Cooling of Levitated Nanoparticles.
    Fonseca PZ; Aranas EB; Millen J; Monteiro TS; Barker PF
    Phys Rev Lett; 2016 Oct; 117(17):173602. PubMed ID: 27824467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical side-band cooling of a low frequency optomechanical system.
    Eerkens HJ; Buters FM; Weaver MJ; Pepper B; Welker G; Heeck K; Sonin P; de Man S; Bouwmeester D
    Opt Express; 2015 Mar; 23(6):8014-20. PubMed ID: 25837139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-cooling of a micromirror by radiation pressure.
    Gigan S; Böhm HR; Paternostro M; Blaser F; Langer G; Hertzberg JB; Schwab KC; Bäuerle D; Aspelmeyer M; Zeilinger A
    Nature; 2006 Nov; 444(7115):67-70. PubMed ID: 17080084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ground state cooling of an optomechanical resonator assisted by a Λ-type atom.
    Zhang S; Zhang JQ; Zhang J; Wu CW; Wu W; Chen PX
    Opt Express; 2014 Nov; 22(23):28118-31. PubMed ID: 25402052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser Cooling of a Micromechanical Membrane to the Quantum Backaction Limit.
    Peterson RW; Purdy TP; Kampel NS; Andrews RW; Yu PL; Lehnert KW; Regal CA
    Phys Rev Lett; 2016 Feb; 116(6):063601. PubMed ID: 26918990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. All-optical optomechanics: an optical spring mirror.
    Singh S; Phelps GA; Goldbaum DS; Wright EM; Meystre P
    Phys Rev Lett; 2010 Nov; 105(21):213602. PubMed ID: 21231305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sympathetic cooling of a membrane oscillator in a hybrid mechanical-atomic system.
    Jöckel A; Faber A; Kampschulte T; Korppi M; Rakher MT; Treutlein P
    Nat Nanotechnol; 2015 Jan; 10(1):55-9. PubMed ID: 25420032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cooling mechanical motion via vacuum effect of an ensemble of quantum emitters.
    Nie W; Chen A; Lan Y
    Opt Express; 2015 Nov; 23(24):30970-84. PubMed ID: 26698728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kerr-Enhanced Optical Spring.
    Otabe S; Usukura W; Suzuki K; Komori K; Michimura Y; Harada KI; Somiya K
    Phys Rev Lett; 2024 Apr; 132(14):143602. PubMed ID: 38640396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Double-passage ground-state cooling induced by quantum interference in the hybrid optomechanical system.
    Li L; Luo RH; Liu L; Zhang S; Zhang JQ
    Sci Rep; 2018 Sep; 8(1):14276. PubMed ID: 30250233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissipative Optomechanical Preparation of Macroscopic Quantum Superposition States.
    Abdi M; Degenfeld-Schonburg P; Sameti M; Navarrete-Benlloch C; Hartmann MJ
    Phys Rev Lett; 2016 Jun; 116(23):233604. PubMed ID: 27341233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optically trapped mirror for reaching the standard quantum limit.
    Matsumoto N; Michimura Y; Aso Y; Tsubono K
    Opt Express; 2014 Jun; 22(11):12915-23. PubMed ID: 24921489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coherent Atom-Phonon Interaction through Mode Field Coupling in Hybrid Optomechanical Systems.
    Cotrufo M; Fiore A; Verhagen E
    Phys Rev Lett; 2017 Mar; 118(13):133603. PubMed ID: 28409944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics.
    Liu YC; Xiao YF; Luan X; Wong CW
    Phys Rev Lett; 2013 Apr; 110(15):153606. PubMed ID: 25167269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.