These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 25680027)

  • 1. Complexity of protein energy landscapes studied by solution NMR relaxation dispersion experiments.
    Khirich G; Loria JP
    J Phys Chem B; 2015 Mar; 119(9):3743-54. PubMed ID: 25680027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of enzyme motions by solution NMR relaxation dispersion.
    Loria JP; Berlow RB; Watt ED
    Acc Chem Res; 2008 Feb; 41(2):214-21. PubMed ID: 18281945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conservation of mus-ms enzyme motions in the apo- and substrate-mimicked state.
    Beach H; Cole R; Gill ML; Loria JP
    J Am Chem Soc; 2005 Jun; 127(25):9167-76. PubMed ID: 15969595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for flexibility in the function of ribonuclease A.
    Cole R; Loria JP
    Biochemistry; 2002 May; 41(19):6072-81. PubMed ID: 11994002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alteration of hydrogen bonding in the vicinity of histidine 48 disrupts millisecond motions in RNase A.
    Doucet N; Khirich G; Kovrigin EL; Loria JP
    Biochemistry; 2011 Mar; 50(10):1723-30. PubMed ID: 21250662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature dependence of the backbone dynamics of ribonuclease A in the ground state and bound to the inhibitor 5'-phosphothymidine (3'-5')pyrophosphate adenosine 3'-phosphate.
    Kovrigin EL; Cole R; Loria JP
    Biochemistry; 2003 May; 42(18):5279-91. PubMed ID: 12731869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal denaturation of ribonuclease A characterized by water 17O and 2H magnetic relaxation dispersion.
    Denisov VP; Halle B
    Biochemistry; 1998 Jun; 37(26):9595-604. PubMed ID: 9649343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational flexibility of a human immunoglobulin light chain variable domain by relaxation dispersion nuclear magnetic resonance spectroscopy: implications for protein misfolding and amyloid assembly.
    Mukherjee S; Pondaven SP; Jaroniec CP
    Biochemistry; 2011 Jul; 50(26):5845-57. PubMed ID: 21627161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanism of rate-limiting motions in enzyme function.
    Watt ED; Shimada H; Kovrigin EL; Loria JP
    Proc Natl Acad Sci U S A; 2007 Jul; 104(29):11981-6. PubMed ID: 17615241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational exchange in pseudoazurin: different kinds of microsecond to millisecond dynamics characterized by their pH and buffer dependence using 15N NMR relaxation.
    Hass MA; Vlasie MD; Ubbink M; Led JJ
    Biochemistry; 2009 Jan; 48(1):50-8. PubMed ID: 19072172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. What's in your buffer? Solute altered millisecond motions detected by solution NMR.
    Wong M; Khirich G; Loria JP
    Biochemistry; 2013 Sep; 52(37):6548-58. PubMed ID: 23991940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Network of long-range concerted chemical shift displacements upon ligand binding to human angiogenin.
    Gagné D; Narayanan C; Doucet N
    Protein Sci; 2015 Apr; 24(4):525-33. PubMed ID: 25450558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature dependence of the preferential interactions of ribonuclease A in aqueous co-solvent systems: thermodynamic analysis.
    Xie G; Timasheff SN
    Protein Sci; 1997 Jan; 6(1):222-32. PubMed ID: 9007994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural characterization of an analog of the major rate-determining disulfide folding intermediate of bovine pancreatic ribonuclease A.
    Laity JH; Lester CC; Shimotakahara S; Zimmerman DE; Montelione GT; Scheraga HA
    Biochemistry; 1997 Oct; 36(42):12683-99. PubMed ID: 9335525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of sample pH on the conformational backbone dynamics of a pseudotripeptide (H-Tyr-Tic psi [CH2-NH]Phe-OH) incorporating a reduced peptide bond: an NMR investigation.
    Carpenter KA; Wilkes BC; Schiller PW
    Biopolymers; 1995 Dec; 36(6):735-49. PubMed ID: 8555421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the conformational equilibrium between the two major substates of RNase A using NMR chemical shifts.
    Camilloni C; Robustelli P; De Simone A; Cavalli A; Vendruscolo M
    J Am Chem Soc; 2012 Mar; 134(9):3968-71. PubMed ID: 22320129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Destabilizing mutations alter the hydrogen exchange mechanism in ribonuclease A.
    Bruix M; Ribó M; Benito A; Laurents DV; Rico M; Vilanova M
    Biophys J; 2008 Mar; 94(6):2297-305. PubMed ID: 18192347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of a hydrophobically collapsed intermediate on the conformational folding pathway of ribonuclease A probed by hydrogen-deuterium exchange.
    Houry WA; Scheraga HA
    Biochemistry; 1996 Sep; 35(36):11734-46. PubMed ID: 8794754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. His ... Asp catalytic dyad of ribonuclease A: histidine pKa values in the wild-type, D121N, and D121A enzymes.
    Quirk DJ; Raines RT
    Biophys J; 1999 Mar; 76(3):1571-9. PubMed ID: 10049337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature-jump NMR study of protein folding: ribonuclease A at low pH.
    Akasaka K; Naito A; Nakatani H
    J Biomol NMR; 1991 May; 1(1):65-70. PubMed ID: 1841690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.