BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 25680113)

  • 1. Evidence-based translation for the genomic responses of murine models for the study of human immunity.
    Seok J
    PLoS One; 2015; 10(2):e0118017. PubMed ID: 25680113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational translation of genomic responses from experimental model systems to humans.
    Brubaker DK; Proctor EA; Haigis KM; Lauffenburger DA
    PLoS Comput Biol; 2019 Jan; 15(1):e1006286. PubMed ID: 30629591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Translational Genomics in Neurocritical Care: a Review.
    Myserlis P; Radmanesh F; Anderson CD
    Neurotherapeutics; 2020 Apr; 17(2):563-580. PubMed ID: 32080794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advanced model systems and tools for basic and translational human immunology.
    Wagar LE; DiFazio RM; Davis MM
    Genome Med; 2018 Sep; 10(1):73. PubMed ID: 30266097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. KERIS: kaleidoscope of gene responses to inflammation between species.
    Li P; Tompkins RG; Xiao W;
    Nucleic Acids Res; 2017 Jan; 45(D1):D908-D914. PubMed ID: 27789704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. mEBT: multiple-matching evidence-based translator of murine genomic responses for human immunity studies.
    Tae D; Seok J
    Bioinformatics; 2018 Nov; 34(21):3741-3743. PubMed ID: 29850767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A procedure to statistically evaluate agreement of differential expression for cross-species genomics.
    Pounds S; Gao CL; Johnson RA; Wright KD; Poppleton H; Finkelstein D; Leary SE; Gilbertson RJ
    Bioinformatics; 2011 Aug; 27(15):2098-103. PubMed ID: 21697127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. canSAR: update to the cancer translational research and drug discovery knowledgebase.
    Mitsopoulos C; Di Micco P; Fernandez EV; Dolciami D; Holt E; Mica IL; Coker EA; Tym JE; Campbell J; Che KH; Ozer B; Kannas C; Antolin AA; Workman P; Al-Lazikani B
    Nucleic Acids Res; 2021 Jan; 49(D1):D1074-D1082. PubMed ID: 33219674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolving challenges to model human diseases for translational research.
    Beck AP; Meyerholz DK
    Cell Tissue Res; 2020 May; 380(2):305-311. PubMed ID: 32130478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrative Analysis of Genetic, Genomic, and Phenotypic Data for Ethanol Behaviors: A Network-Based Pipeline for Identifying Mechanisms and Potential Drug Targets.
    Bogenpohl JW; Mignogna KM; Smith ML; Miles MF
    Methods Mol Biol; 2017; 1488():531-549. PubMed ID: 27933543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of Translational Bioinformatics: lessons learned from TBC 2016.
    Lee KH; Kim JH
    BMC Med Genomics; 2017 May; 10(Suppl 1):32. PubMed ID: 28589861
    [No Abstract]   [Full Text] [Related]  

  • 12. crcTRP: a translational research platform for colorectal cancer.
    Deng N; Zheng L; Liu F; Wang L; Duan H
    Comput Math Methods Med; 2013; 2013():930362. PubMed ID: 23431356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Realizing the potential of genomics: translation is not translational research.
    Zimmern RL; Brice PC
    Genet Med; 2009 Dec; 11(12):898-9; author reply 899. PubMed ID: 20010367
    [No Abstract]   [Full Text] [Related]  

  • 14. Found In Translation: a machine learning model for mouse-to-human inference.
    Normand R; Du W; Briller M; Gaujoux R; Starosvetsky E; Ziv-Kenet A; Shalev-Malul G; Tibshirani RJ; Shen-Orr SS
    Nat Methods; 2018 Dec; 15(12):1067-1073. PubMed ID: 30478323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EBT: a statistic test identifying moderate size of significant features with balanced power and precision for genome-wide rate comparisons.
    Hui X; Hu Y; Sun MA; Shu X; Han R; Ge Q; Wang Y
    Bioinformatics; 2017 Sep; 33(17):2631-2641. PubMed ID: 28472273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MVisAGe Identifies Concordant and Discordant Genomic Alterations of Driver Genes in Squamous Tumors.
    Walter V; Du Y; Danilova L; Hayward MC; Hayes DN
    Cancer Res; 2018 Jun; 78(12):3375-3385. PubMed ID: 29700001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental and computational modeling for signature and biomarker discovery of renal cell carcinoma progression.
    Cooley LS; Rudewicz J; Souleyreau W; Emanuelli A; Alvarez-Arenas A; Clarke K; Falciani F; Dufies M; Lambrechts D; Modave E; Chalopin-Fillot D; Pineau R; Ambrosetti D; Bernhard JC; Ravaud A; Négrier S; Ferrero JM; Pagès G; Benzekry S; Nikolski M; Bikfalvi A
    Mol Cancer; 2021 Oct; 20(1):136. PubMed ID: 34670568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive characterization of immune- and inflammation-associated biomarkers based on multi-omics integration in kidney renal clear cell carcinoma.
    Zhao E; Li L; Zhang W; Wang W; Chan Y; You B; Li X
    J Transl Med; 2019 May; 17(1):177. PubMed ID: 31133033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic responses in mouse models poorly mimic human inflammatory diseases.
    Seok J; Warren HS; Cuenca AG; Mindrinos MN; Baker HV; Xu W; Richards DR; McDonald-Smith GP; Gao H; Hennessy L; Finnerty CC; López CM; Honari S; Moore EE; Minei JP; Cuschieri J; Bankey PE; Johnson JL; Sperry J; Nathens AB; Billiar TR; West MA; Jeschke MG; Klein MB; Gamelli RL; Gibran NS; Brownstein BH; Miller-Graziano C; Calvano SE; Mason PH; Cobb JP; Rahme LG; Lowry SF; Maier RV; Moldawer LL; Herndon DN; Davis RW; Xiao W; Tompkins RG;
    Proc Natl Acad Sci U S A; 2013 Feb; 110(9):3507-12. PubMed ID: 23401516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Survival prediction from clinico-genomic models--a comparative study.
    Bøvelstad HM; Nygård S; Borgan O
    BMC Bioinformatics; 2009 Dec; 10():413. PubMed ID: 20003386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.