These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 25680180)

  • 1. Transcriptome wide annotation of eukaryotic RNase III reactivity and degradation signals.
    Gagnon J; Lavoie M; Catala M; Malenfant F; Elela SA
    PLoS Genet; 2015 Feb; 11(2):e1005000. PubMed ID: 25680180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular requirements for duplex recognition and cleavage by eukaryotic RNase III: discovery of an RNA-dependent DNA cleavage activity of yeast Rnt1p.
    Lamontagne B; Hannoush RN; Damha MJ; Abou Elela S
    J Mol Biol; 2004 Apr; 338(2):401-18. PubMed ID: 15066440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide prediction and analysis of yeast RNase III-dependent snoRNA processing signals.
    Ghazal G; Ge D; Gervais-Bird J; Gagnon J; Abou Elela S
    Mol Cell Biol; 2005 Apr; 25(8):2981-94. PubMed ID: 15798187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and function of Rnt1p: An alternative to RNAi for targeted RNA degradation.
    Abou Elela S; Ji X
    Wiley Interdiscip Rev RNA; 2019 May; 10(3):e1521. PubMed ID: 30548404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The catalytic efficiency of yeast ribonuclease III depends on substrate specific product release rate.
    Comeau MA; Lafontaine DA; Abou Elela S
    Nucleic Acids Res; 2016 Sep; 44(16):7911-21. PubMed ID: 27257067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence dependence of substrate recognition and cleavage by yeast RNase III.
    Lamontagne B; Ghazal G; Lebars I; Yoshizawa S; Fourmy D; Elela SA
    J Mol Biol; 2003 Apr; 327(5):985-1000. PubMed ID: 12662924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Functional Cycle of Rnt1p: Five Consecutive Steps of Double-Stranded RNA Processing by a Eukaryotic RNase III.
    Song H; Fang X; Jin L; Shaw GX; Wang YX; Ji X
    Structure; 2017 Feb; 25(2):353-363. PubMed ID: 28111020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the reactivity determinants of a novel hairpin substrate of yeast RNase III.
    Ghazal G; Elela SA
    J Mol Biol; 2006 Oct; 363(2):332-44. PubMed ID: 16962133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical and genomic analysis of substrate recognition by the double-stranded RNA binding domain of yeast RNase III.
    Henras AK; Sam M; Hiley SL; Wu H; Hughes TR; Feigon J; Chanfreau GF
    RNA; 2005 Aug; 11(8):1225-37. PubMed ID: 15987808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNase III-dependent regulation of yeast telomerase.
    Larose S; Laterreur N; Ghazal G; Gagnon J; Wellinger RJ; Elela SA
    J Biol Chem; 2007 Feb; 282(7):4373-4381. PubMed ID: 17158880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A conserved major groove antideterminant for Saccharomyces cerevisiae RNase III recognition.
    Sam M; Henras AK; Chanfreau G
    Biochemistry; 2005 Mar; 44(11):4181-7. PubMed ID: 15766245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate recognition by a eukaryotic RNase III: the double-stranded RNA-binding domain of Rnt1p selectively binds RNA containing a 5'-AGNN-3' tetraloop.
    Nagel R; Ares M
    RNA; 2000 Aug; 6(8):1142-56. PubMed ID: 10943893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of a yeast RNase III dsRBD complex with a noncanonical RNA substrate provides new insights into binding specificity of dsRBDs.
    Wang Z; Hartman E; Roy K; Chanfreau G; Feigon J
    Structure; 2011 Jul; 19(7):999-1010. PubMed ID: 21742266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Yeast ribonuclease III uses a network of multiple hydrogen bonds for RNA binding and cleavage.
    Lavoie M; Abou Elela S
    Biochemistry; 2008 Aug; 47(33):8514-26. PubMed ID: 18646867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recognition of a conserved class of RNA tetraloops by Saccharomyces cerevisiae RNase III.
    Chanfreau G; Buckle M; Jacquier A
    Proc Natl Acad Sci U S A; 2000 Mar; 97(7):3142-7. PubMed ID: 10716739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel family of RNA tetraloop structure forms the recognition site for Saccharomyces cerevisiae RNase III.
    Wu H; Yang PK; Butcher SE; Kang S; Chanfreau G; Feigon J
    EMBO J; 2001 Dec; 20(24):7240-9. PubMed ID: 11743000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of a eukaryotic RNase III postcleavage complex reveals a double-ruler mechanism for substrate selection.
    Liang YH; Lavoie M; Comeau MA; Abou Elela S; Ji X
    Mol Cell; 2014 May; 54(3):431-44. PubMed ID: 24703949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNAse III-mediated degradation of unspliced pre-mRNAs and lariat introns.
    Danin-Kreiselman M; Lee CY; Chanfreau G
    Mol Cell; 2003 May; 11(5):1279-89. PubMed ID: 12769851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new alpha-helical extension promotes RNA binding by the dsRBD of Rnt1p RNAse III.
    Leulliot N; Quevillon-Cheruel S; Graille M; van Tilbeurgh H; Leeper TC; Godin KS; Edwards TE; Sigurdsson ST; Rozenkrants N; Nagel RJ; Ares M; Varani G
    EMBO J; 2004 Jul; 23(13):2468-77. PubMed ID: 15192703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell cycle-dependent nuclear localization of yeast RNase III is required for efficient cell division.
    Catala M; Lamontagne B; Larose S; Ghazal G; Elela SA
    Mol Biol Cell; 2004 Jul; 15(7):3015-30. PubMed ID: 15090619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.