These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. An adaptive CSP filter to investigate user independence in a 3-class MI-BCI paradigm. Costa AP; Møller JS; Iversen HK; Puthusserypady S Comput Biol Med; 2018 Dec; 103():24-33. PubMed ID: 30336362 [TBL] [Abstract][Full Text] [Related]
8. xDAWN algorithm to enhance evoked potentials: application to brain-computer interface. Rivet B; Souloumiac A; Attina V; Gibert G IEEE Trans Biomed Eng; 2009 Aug; 56(8):2035-43. PubMed ID: 19174332 [TBL] [Abstract][Full Text] [Related]
9. Detection of user independent single trial ERPs in Brain Computer Interfaces: An adaptive spatial filtering approach. Leza C; Puthusserypady S Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2243-2246. PubMed ID: 29060343 [TBL] [Abstract][Full Text] [Related]
10. Single-trial classification of event-related potentials in rapid serial visual presentation tasks using supervised spatial filtering. Cecotti H; Eckstein MP; Giesbrecht B IEEE Trans Neural Netw Learn Syst; 2014 Nov; 25(11):2030-42. PubMed ID: 25330426 [TBL] [Abstract][Full Text] [Related]
11. Efficient FIR Filter Implementations for Multichannel BCIs Using Xilinx System Generator. Ghani U; Wasim M; Khan US; Mubasher Saleem M; Hassan A; Rashid N; Islam Tiwana M; Hamza A; Kashif A Biomed Res Int; 2018; 2018():9861350. PubMed ID: 29568777 [No Abstract] [Full Text] [Related]
12. Improving brain-computer interface classification using adaptive common spatial patterns. Song X; Yoon SC Comput Biol Med; 2015 Jun; 61():150-60. PubMed ID: 25909828 [TBL] [Abstract][Full Text] [Related]
13. Optimizing event-related potential based brain-computer interfaces: a systematic evaluation of dynamic stopping methods. Schreuder M; Höhne J; Blankertz B; Haufe S; Dickhaus T; Tangermann M J Neural Eng; 2013 Jun; 10(3):036025. PubMed ID: 23685458 [TBL] [Abstract][Full Text] [Related]
14. Task-dependent signal variations in EEG error-related potentials for brain-computer interfaces. Iturrate I; Montesano L; Minguez J J Neural Eng; 2013 Apr; 10(2):026024. PubMed ID: 23528750 [TBL] [Abstract][Full Text] [Related]
15. Learning from label proportions in brain-computer interfaces: Online unsupervised learning with guarantees. Hübner D; Verhoeven T; Schmid K; Müller KR; Tangermann M; Kindermans PJ PLoS One; 2017; 12(4):e0175856. PubMed ID: 28407016 [TBL] [Abstract][Full Text] [Related]
17. Adaptive spatio-temporal filtering for movement related potentials in EEG-based brain-computer interfaces. Lu J; Xie K; McFarland DJ IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):847-57. PubMed ID: 24723632 [TBL] [Abstract][Full Text] [Related]
18. Learning Discriminative Spatiospectral Features of ERPs for Accurate Brain-Computer Interfaces. Abibullaev B; Zollanvari A IEEE J Biomed Health Inform; 2019 Sep; 23(5):2009-2020. PubMed ID: 30668507 [TBL] [Abstract][Full Text] [Related]
19. Boosting bit rates and error detection for the classification of fast-paced motor commands based on single-trial EEG analysis. Blankertz B; Dornhege G; Schäfer C; Krepki R; Kohlmorgen J; Müller KR; Kunzmann V; Losch F; Curio G IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):127-31. PubMed ID: 12899253 [TBL] [Abstract][Full Text] [Related]
20. Best practice for single-trial detection of event-related potentials: Application to brain-computer interfaces. Cecotti H; Ries AJ Int J Psychophysiol; 2017 Jan; 111():156-169. PubMed ID: 27453051 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]