BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 25680299)

  • 1. Computed tomography landmark-based semi-automated mesh morphing and mapping techniques: generation of patient specific models of the human pelvis without segmentation.
    Salo Z; Beek M; Wright D; Whyne CM
    J Biomech; 2015 Apr; 48(6):1125-32. PubMed ID: 25680299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of mesh morphing and mapping techniques in patient specific modelling of the human pelvis.
    Salo Z; Beek M; Whyne CM
    Int J Numer Method Biomed Eng; 2012 Aug; 28(8):904-13. PubMed ID: 25099570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of pelvic strain in different gait configurations in a validated cohort of computed tomography based finite element models.
    Salo Z; Beek M; Wright D; Maloul A; Whyne CM
    J Biomech; 2017 Nov; 64():120-130. PubMed ID: 29031524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of mesh morphing and mapping techniques in patient specific modeling of the human pelvis.
    Salo Z; Beek M; Whyne CM
    Int J Numer Method Biomed Eng; 2013 Jan; 29(1):104-13. PubMed ID: 23293071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mesh-morphing algorithms for specimen-specific finite element modeling.
    Sigal IA; Hardisty MR; Whyne CM
    J Biomech; 2008; 41(7):1381-9. PubMed ID: 18397789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of pelvic shape on strain patterns: A computational analysis using finite element mesh morphing techniques.
    Salo Z; Kreder H; Whyne CM
    J Biomech; 2021 Feb; 116():110207. PubMed ID: 33422723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of computed tomography based parametric and patient-specific finite element models of the healthy and metastatic spine using a mesh-morphing algorithm.
    O'Reilly MA; Whyne CM
    Spine (Phila Pa 1976); 2008 Aug; 33(17):1876-81. PubMed ID: 18670341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the generality and accuracy of a new mesh morphing procedure for the human femur.
    Grassi L; Hraiech N; Schileo E; Ansaloni M; Rochette M; Viceconti M
    Med Eng Phys; 2011 Jan; 33(1):112-20. PubMed ID: 21036655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and validation of patient-specific finite element models of the hemipelvis generated from a sparse CT data set.
    Shim VB; Pitto RP; Streicher RM; Hunter PJ; Anderson IA
    J Biomech Eng; 2008 Oct; 130(5):051010. PubMed ID: 19045517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and validation of a semi-automatic landmark extraction method for mesh morphing.
    Wu J; Cai M; Li J; Cao L; Xu L; Li N; Hu J
    Med Eng Phys; 2019 Aug; 70():62-71. PubMed ID: 31229385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of sparse CT datasets for auto-generating accurate FE models of the femur and pelvis.
    Shim VB; Pitto RP; Streicher RM; Hunter PJ; Anderson IA
    J Biomech; 2007; 40(1):26-35. PubMed ID: 16427645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of subject-specific and statistical shape models of the knee using an efficient segmentation and mesh-morphing approach.
    Baldwin MA; Langenderfer JE; Rullkoetter PJ; Laz PJ
    Comput Methods Programs Biomed; 2010 Mar; 97(3):232-40. PubMed ID: 19695732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite element study of human pelvis model in side impact for Chinese adult occupants.
    Ma Z; Lan F; Chen J; Liu W
    Traffic Inj Prev; 2015; 16(4):409-17. PubMed ID: 25133596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High resolution bone material property assignment yields robust subject specific finite element models of complex thin bone structures.
    Pakdel A; Fialkov J; Whyne CM
    J Biomech; 2016 Jun; 49(9):1454-1460. PubMed ID: 27033728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of boundary condition on the biomechanics of a human pelvic joint under an axial compressive load: a three-dimensional finite element model.
    Hao Z; Wan C; Gao X; Ji T
    J Biomech Eng; 2011 Oct; 133(10):101006. PubMed ID: 22070331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subject specific finite element mesh generation of the pelvis from biplanar x-ray images: application to 120 clinical cases.
    Fougeron N; Rohan PY; Macron A; Travert C; Pillet H; Skalli W
    Comput Methods Biomech Biomed Engin; 2018 Apr; 21(5):408-412. PubMed ID: 29969279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subject-specific finite element model of the pelvis: development, validation and sensitivity studies.
    Anderson AE; Peters CL; Tuttle BD; Weiss JA
    J Biomech Eng; 2005 Jun; 127(3):364-73. PubMed ID: 16060343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The finite element modeling of human pelvis and its application in medicolegal expertise].
    Li ZD; Zou DH; Liu NG; Huang P; Chen YJ
    Fa Yi Xue Za Zhi; 2010 Dec; 26(6):406-12. PubMed ID: 21425599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterogeneous material mapping methods for patient-specific finite element models of pelvic trabecular bone: A convergence study.
    Babazadeh Naseri A; Dunbar NJ; Baines AJ; Akin JE; Higgs Iii CF; Fregly BJ
    Med Eng Phys; 2021 Oct; 96():1-12. PubMed ID: 34565547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic segmentation of thoracic and pelvic CT images for radiotherapy planning using implicit anatomic knowledge and organ-specific segmentation strategies.
    Haas B; Coradi T; Scholz M; Kunz P; Huber M; Oppitz U; André L; Lengkeek V; Huyskens D; van Esch A; Reddick R
    Phys Med Biol; 2008 Mar; 53(6):1751-71. PubMed ID: 18367801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.