These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 25680299)

  • 21. An eFTD-VP framework for efficiently generating patient-specific anatomically detailed facial soft tissue FE mesh for craniomaxillofacial surgery simulation.
    Zhang X; Kim D; Shen S; Yuan P; Liu S; Tang Z; Zhang G; Zhou X; Gateno J; Liebschner MAK; Xia JJ
    Biomech Model Mechanobiol; 2018 Apr; 17(2):387-402. PubMed ID: 29027022
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Generation of a suite of 3D computer-generated breast phantoms from a limited set of human subject data.
    Hsu CM; Palmeri ML; Segars WP; Veress AI; Dobbins JT
    Med Phys; 2013 Apr; 40(4):043703. PubMed ID: 23556929
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A subject-specific pelvic bone model and its application to cemented acetabular replacements.
    Zhang QH; Wang JY; Lupton C; Heaton-Adegbile P; Guo ZX; Liu Q; Tong J
    J Biomech; 2010 Oct; 43(14):2722-7. PubMed ID: 20655051
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mesh morphing for finite element analysis of implant positioning in cementless total hip replacements.
    Bah MT; Nair PB; Browne M
    Med Eng Phys; 2009 Dec; 31(10):1235-43. PubMed ID: 19744873
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Automated segmentation of cortical and trabecular bone to generate finite element models for femoral bone mechanics.
    Väänänen SP; Grassi L; Venäläinen MS; Matikka H; Zheng Y; Jurvelin JS; Isaksson H
    Med Eng Phys; 2019 Aug; 70():19-28. PubMed ID: 31280927
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Trabecular plates and rods determine elastic modulus and yield strength of human trabecular bone.
    Wang J; Zhou B; Liu XS; Fields AJ; Sanyal A; Shi X; Adams M; Keaveny TM; Guo XE
    Bone; 2015 Mar; 72():71-80. PubMed ID: 25460571
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Geometric modeling of living tissue for subject-specific finite element analysis.
    Tada M; Yoshida H; Mochimaru M
    Conf Proc IEEE Eng Med Biol Soc; 2006; Suppl():6639-42. PubMed ID: 17959473
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A voxel-based finite element model for the prediction of bladder deformation.
    Chai X; van Herk M; Hulshof MC; Bel A
    Med Phys; 2012 Jan; 39(1):55-65. PubMed ID: 22225275
    [TBL] [Abstract][Full Text] [Related]  

  • 29.
    Ramezani M; Klima S; de la Herverie PLC; Campo J; Le Joncour JB; Rouquette C; Scholze M; Hammer N
    Biomed Res Int; 2019; 2019():3973170. PubMed ID: 30729122
    [No Abstract]   [Full Text] [Related]  

  • 30. Semiautomated finite element mesh generation methods for a long bone.
    Pfeiler TW; Lalush DS; Loboa EG
    Comput Methods Programs Biomed; 2007 Mar; 85(3):196-202. PubMed ID: 17207888
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Development and validating of a three-dimensional finite element model of total human pelvis].
    Cheng LM; Jia YW; Yu GR; Du CF; Yu Y; Lou YJ; Ding ZQ
    Zhonghua Yi Xue Za Zhi; 2007 Dec; 87(47):3346-8. PubMed ID: 18478949
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Minimal medical imaging can accurately reconstruct geometric bone models for musculoskeletal models.
    Suwarganda EK; Diamond LE; Lloyd DG; Besier TF; Zhang J; Killen BA; Savage TN; Saxby DJ
    PLoS One; 2019; 14(2):e0205628. PubMed ID: 30742643
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computed-tomography-based finite-element models of long bones can accurately capture strain response to bending and torsion.
    Varghese B; Short D; Penmetsa R; Goswami T; Hangartner T
    J Biomech; 2011 Apr; 44(7):1374-9. PubMed ID: 21288523
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Statistical shape model-based reconstruction of a scaled, patient-specific surface model of the pelvis from a single standard AP x-ray radiograph.
    Zheng G
    Med Phys; 2010 Apr; 37(4):1424-39. PubMed ID: 20443464
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Automated finite element meshing of the lumbar spine: Verification and validation with 18 specimen-specific models.
    Campbell JQ; Coombs DJ; Rao M; Rullkoetter PJ; Petrella AJ
    J Biomech; 2016 Sep; 49(13):2669-2676. PubMed ID: 27291694
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of a Patient-Specific Finite Element Model for Predicting Implant Failure in Pelvic Ring Fracture Fixation.
    Shim V; Gather A; Höch A; Schreiber D; Grunert R; Peldschus S; Josten C; Böhme J
    Comput Math Methods Med; 2017; 2017():9403821. PubMed ID: 28255332
    [No Abstract]   [Full Text] [Related]  

  • 37. Patient-specific geometrical modeling of orthopedic structures with high efficiency and accuracy for finite element modeling and 3D printing.
    Huang H; Xiang C; Zeng C; Ouyang H; Wong KK; Huang W
    Australas Phys Eng Sci Med; 2015 Dec; 38(4):743-53. PubMed ID: 26577713
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The segmentation of bones in pelvic CT images based on extraction of key frames.
    Yu H; Wang H; Shi Y; Xu K; Yu X; Cao Y
    BMC Med Imaging; 2018 May; 18(1):18. PubMed ID: 29788923
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Measuring morphological parameters of the pelvic floor for finite element modelling purposes.
    Janda S; van der Helm FC; de Blok SB
    J Biomech; 2003 Jun; 36(6):749-57. PubMed ID: 12742442
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Image-based vs. mesh-based statistical appearance models of the human femur: implications for finite element simulations.
    Bonaretti S; Seiler C; Boichon C; Reyes M; Büchler P
    Med Eng Phys; 2014 Dec; 36(12):1626-35. PubMed ID: 25271191
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.