BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 25680392)

  • 21. Tunable blood compatibility of polysulfobetaine from controllable molecular-weight dependence of zwitterionic nonfouling nature in aqueous solution.
    Shih YJ; Chang Y
    Langmuir; 2010 Nov; 26(22):17286-94. PubMed ID: 20882958
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Short fluorocarbon chains containing hydrophobic nanofibrous membranes with improved hemocompatibility, anticoagulation and anti-fouling performance.
    Wang Y; Liu Y; Liu M; Qian W; Zhou D; Liu T; Luo G; Xing M
    Colloids Surf B Biointerfaces; 2019 Aug; 180():49-57. PubMed ID: 31028964
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differentiation of cardiosphere-derived cells into a mature cardiac lineage using biodegradable poly(N-isopropylacrylamide) hydrogels.
    Li Z; Guo X; Matsushita S; Guan J
    Biomaterials; 2011 Apr; 32(12):3220-32. PubMed ID: 21296413
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanical and swelling characterization of poly(N-isopropyl acrylamide -co- methoxy poly(ethylene glycol) methacrylate) sol-gels.
    Pollock JF; Healy KE
    Acta Biomater; 2010 Apr; 6(4):1307-18. PubMed ID: 19941981
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Temperature- and pH-sensitive terpolymers for modulated delivery of streptokinase.
    Vakkalanka SK; Brazel CS; Peppas NA
    J Biomater Sci Polym Ed; 1996; 8(2):119-29. PubMed ID: 8957708
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stimuli-responsive coacervate induced in binary functionalized poly(N-isopropylacrylamide) aqueous system and novel method for preparing semi-ipn microgel using the coacervate.
    Maeda T; Akasaki Y; Yamamoto K; Aoyagi T
    Langmuir; 2009 Aug; 25(16):9510-7. PubMed ID: 19492785
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Temperature-triggered attachment and detachment of general human bio-foulants on zwitterionic polydimethylsiloxane.
    Tan CME; Dizon GV; Chen SH; Venault A; Chou YN; Tayo L; Chang Y
    J Mater Chem B; 2020 Oct; 8(38):8853-8863. PubMed ID: 33026392
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vitro cyto-biocompatibility and cell detachment of temperature-sensitive dextran hydrogel.
    Xiao F; Chen L; Xing RF; Zhao YP; Dong J; Guo G; Zhang R
    Colloids Surf B Biointerfaces; 2009 Jun; 71(1):13-8. PubMed ID: 19181494
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Poly(N-isopropylacrylamide-co-methacrylic acid) pH/thermo-responsive porous hydrogels as self-regulated drug delivery system.
    Constantin M; Bucatariu S; Harabagiu V; Popescu I; Ascenzi P; Fundueanu G
    Eur J Pharm Sci; 2014 Oct; 62():86-95. PubMed ID: 24844700
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation and properties of a pH/temperature-responsive carboxymethyl chitosan/poly(N-isopropylacrylamide)semi-IPN hydrogel for oral delivery of drugs.
    Guo BL; Gao QY
    Carbohydr Res; 2007 Nov; 342(16):2416-22. PubMed ID: 17669378
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surface modification of silicone for biomedical applications requiring long-term antibacterial, antifouling, and hemocompatible properties.
    Li M; Neoh KG; Xu LQ; Wang R; Kang ET; Lau T; Olszyna DP; Chiong E
    Langmuir; 2012 Nov; 28(47):16408-22. PubMed ID: 23121175
    [TBL] [Abstract][Full Text] [Related]  

  • 32. pH- and temperature-responsive hydrogels from crosslinked triblock copolymers prepared via consecutive atom transfer radical polymerizations.
    Xu FJ; Kang ET; Neoh KG
    Biomaterials; 2006 May; 27(14):2787-97. PubMed ID: 16442613
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In situ forming, resorbable graft copolymer hydrogels providing controlled drug release.
    Overstreet DJ; Huynh R; Jarbo K; McLemore RY; Vernon BL
    J Biomed Mater Res A; 2013 May; 101(5):1437-46. PubMed ID: 23114985
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temperature-Responsive Nanofibrillar Hydrogels for Cell Encapsulation.
    Thérien-Aubin H; Wang Y; Nothdurft K; Prince E; Cho S; Kumacheva E
    Biomacromolecules; 2016 Oct; 17(10):3244-3251. PubMed ID: 27615746
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chemical and physical factors in design of antibiofouling polymer coatings.
    Eshet I; Freger V; Kasher R; Herzberg M; Lei J; Ulbricht M
    Biomacromolecules; 2011 Jul; 12(7):2681-5. PubMed ID: 21615083
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hemocompatible control of sulfobetaine-grafted polypropylene fibrous membranes in human whole blood via plasma-induced surface zwitterionization.
    Chen SH; Chang Y; Lee KR; Wei TC; Higuchi A; Ho FM; Tsou CC; Ho HT; Lai JY
    Langmuir; 2012 Dec; 28(51):17733-42. PubMed ID: 23181727
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrokinetics of diffuse soft interfaces. IV. Analysis of streaming current measurements at thermoresponsive thin films.
    Duval JF; Zimmermann R; Cordeiro AL; Rein N; Werner C
    Langmuir; 2009 Sep; 25(18):10691-703. PubMed ID: 19518102
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photopolymerized thermosensitive hydrogels: synthesis, degradation, and cytocompatibility.
    Vermonden T; Fedorovich NE; van Geemen D; Alblas J; van Nostrum CF; Dhert WJ; Hennink WE
    Biomacromolecules; 2008 Mar; 9(3):919-26. PubMed ID: 18288801
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biocompatibility and drug release behavior of spontaneously formed phospholipid polymer hydrogels.
    Kimura M; Takai M; Ishihara K
    J Biomed Mater Res A; 2007 Jan; 80(1):45-54. PubMed ID: 16958047
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stimuli-sensitive xanthan derivatives/N-isopropylacrylamide hydrogels: influence of cross-linking agent on interpenetrating polymer network properties.
    Hamcerencu M; Desbrieres J; Popa M; Riess G
    Biomacromolecules; 2009 Jul; 10(7):1911-22. PubMed ID: 19499889
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.