BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 25680523)

  • 1. Comparison of myocardial perfusion evaluation with single versus dual-energy CT and effect of beam-hardening artifacts.
    Carrascosa PM; Cury RC; Deviggiano A; Capunay C; Campisi R; López de Munain M; Vallejos J; Tajer C; Rodriguez-Granillo GA
    Acad Radiol; 2015 May; 22(5):591-9. PubMed ID: 25680523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative myocardial perfusion imaging using rapid kVp switch dual-energy CT: preliminary experience.
    So A; Lee TY; Imai Y; Narayanan S; Hsieh J; Kramer J; Procknow K; Leipsic J; Labounty T; Min J
    J Cardiovasc Comput Tomogr; 2011; 5(6):430-42. PubMed ID: 22146502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incremental value of myocardial perfusion over coronary angiography by spectral computed tomography in patients with intermediate to high likelihood of coronary artery disease.
    Carrascosa PM; Deviggiano A; Capunay C; Campisi R; López de Munain M; Vallejos J; Tajer C; Rodriguez-Granillo GA
    Eur J Radiol; 2015 Apr; 84(4):637-42. PubMed ID: 25600679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CT detection of myocardial blood volume deficits: dual-energy CT compared with single-energy CT spectra.
    Arnoldi E; Lee YS; Ruzsics B; Weininger M; Spears JR; Rowley CP; Chiaramida SA; Costello P; Reiser MF; Schoepf UJ
    J Cardiovasc Comput Tomogr; 2011; 5(6):421-9. PubMed ID: 22146501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cost-effectiveness of substituting dual-energy CT for SPECT in the assessment of myocardial perfusion for the workup of coronary artery disease.
    Meyer M; Nance JW; Schoepf UJ; Moscariello A; Weininger M; Rowe GW; Ruzsics B; Kang DK; Chiaramida SA; Schoenberg SO; Fink C; Henzler T
    Eur J Radiol; 2012 Dec; 81(12):3719-25. PubMed ID: 21277132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myocardial CT perfusion imaging in a large animal model: comparison of dynamic versus single-phase acquisitions.
    Schwarz F; Hinkel R; Baloch E; Marcus RP; Hildebrandt K; Sandner TA; Kupatt C; Hoffmann V; Wintersperger BJ; Reiser MF; Theisen D; Nikolaou K; Bamberg F
    JACC Cardiovasc Imaging; 2013 Dec; 6(12):1229-38. PubMed ID: 24269264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diagnostic performance of dual-energy CT stress myocardial perfusion imaging: direct comparison with cardiovascular MRI.
    Ko SM; Song MG; Chee HK; Hwang HK; Feuchtner GM; Min JK
    AJR Am J Roentgenol; 2014 Dec; 203(6):W605-13. PubMed ID: 25415725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative Analysis of Iodine Image of Dual-energy Computed Tomography at Rest: Comparison With 99mTc-Tetrofosmin Stress-rest Single-photon Emission Computed Tomography Myocardial Perfusion Imaging as the Reference Standard.
    Nakahara T; Toyama T; Jinzaki M; Seki R; Saito Y; Higuchi T; Yamada M; Arai M; Tsushima Y; Kuribayashi S; Kurabayashi M
    J Thorac Imaging; 2018 Mar; 33(2):97-104. PubMed ID: 28622166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incremental value of pharmacological stress cardiac dual-energy CT over coronary CT angiography alone for the assessment of coronary artery disease in a high-risk population.
    De Cecco CN; Harris BS; Schoepf UJ; Silverman JR; McWhite CB; Krazinski AW; Bayer RR; Meinel FG
    AJR Am J Roentgenol; 2014 Jul; 203(1):W70-7. PubMed ID: 24951230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of significant coronary artery disease by noninvasive anatomical and functional imaging.
    Neglia D; Rovai D; Caselli C; Pietila M; Teresinska A; Aguadé-Bruix S; Pizzi MN; Todiere G; Gimelli A; Schroeder S; Drosch T; Poddighe R; Casolo G; Anagnostopoulos C; Pugliese F; Rouzet F; Le Guludec D; Cappelli F; Valente S; Gensini GF; Zawaideh C; Capitanio S; Sambuceti G; Marsico F; Perrone Filardi P; Fernández-Golfín C; Rincón LM; Graner FP; de Graaf MA; Fiechter M; Stehli J; Gaemperli O; Reyes E; Nkomo S; Mäki M; Lorenzoni V; Turchetti G; Carpeggiani C; Marinelli M; Puzzuoli S; Mangione M; Marcheschi P; Mariani F; Giannessi D; Nekolla S; Lombardi M; Sicari R; Scholte AJ; Zamorano JL; Kaufmann PA; Underwood SR; Knuuti J;
    Circ Cardiovasc Imaging; 2015 Mar; 8(3):. PubMed ID: 25711274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual-energy CT and its potential use for quantitative myocardial CT perfusion.
    So A; Hsieh J; Narayanan S; Thibault JB; Imai Y; Dutta S; Leipsic J; Min J; LaBounty T; Lee TY
    J Cardiovasc Comput Tomogr; 2012; 6(5):308-17. PubMed ID: 23040537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of Myocardial Infarction Using Delayed Enhancement Dual-Energy CT in Stable Patients.
    Rodriguez-Granillo GA; Campisi R; Deviggiano A; de Munain MNL; Zan M; Capunay C; Carrascosa P
    AJR Am J Roentgenol; 2017 Nov; 209(5):1023-1032. PubMed ID: 28858542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative diagnostic accuracy of dual-energy CT myocardial perfusion imaging by monochromatic energy versus material decomposition methods.
    Danad I; Cho I; Elmore K; Schulman-Marcus J; Ó Hartaigh B; Stuijfzand WJ; Carrascosa P; Min JK
    Clin Imaging; 2018; 50():1-4. PubMed ID: 29220708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myocardial signal density levels and beam-hardening artifact attenuation using dual-energy computed tomography.
    Rodriguez-Granillo GA; Carrascosa P; Cipriano S; de Zan M; Deviggiano A; Capunay C; Cury RC
    Clin Imaging; 2015; 39(5):809-14. PubMed ID: 25935519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct comparison of stress- and rest-dual-energy computed tomography for detection of myocardial perfusion defect.
    Ko SM; Park JH; Hwang HK; Song MG
    Int J Cardiovasc Imaging; 2014 Jun; 30 Suppl 1():41-53. PubMed ID: 24696012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual-Energy CT Urography With 50% Reduced Iodine Dose Versus Single-Energy CT Urography With Standard Iodine Dose.
    Shuman WP; Mileto A; Busey JM; Desai N; Koprowicz KM
    AJR Am J Roentgenol; 2019 Jan; 212(1):117-123. PubMed ID: 30422713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of dual-energy computed tomography of the heart with single photon emission computed tomography for assessment of coronary artery stenosis and of the myocardial blood supply.
    Ruzsics B; Schwarz F; Schoepf UJ; Lee YS; Bastarrika G; Chiaramida SA; Costello P; Zwerner PL
    Am J Cardiol; 2009 Aug; 104(3):318-26. PubMed ID: 19616661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical Implementation of Dual-energy CT for Proton Treatment Planning on Pseudo-monoenergetic CT scans.
    Wohlfahrt P; Möhler C; Hietschold V; Menkel S; Greilich S; Krause M; Baumann M; Enghardt W; Richter C
    Int J Radiat Oncol Biol Phys; 2017 Feb; 97(2):427-434. PubMed ID: 28068248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prospectively ECG-triggered rapid kV-switching dual-energy CT for quantitative imaging of myocardial perfusion.
    So A; Hsieh J; Imai Y; Narayanan S; Kramer J; Procknow K; Dutta S; Leipsic J; Min JK; Labounty T; Lee TY
    JACC Cardiovasc Imaging; 2012 Aug; 5(8):829-36. PubMed ID: 22897997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performances of low-dose dual-energy CT in reducing artifacts from implanted metallic orthopedic devices.
    Filograna L; Magarelli N; Leone A; de Waure C; Calabrò GE; Finkenstaedt T; Thali MJ; Bonomo L
    Skeletal Radiol; 2016 Jul; 45(7):937-47. PubMed ID: 27033858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.